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Abstract

Regulators manage conflicts of interest within banking conglomerates by enforcing
China Walls—internal information barriers around dealers. To evaluate if today’s
China Walls are effectively enforced, we map information sharing between dealers
and funds using the universe of Israeli Shekel foreign exchange trades. Our design
compares trading activities of affiliates against entirely unrelated firms around ex-
ceptionally large trades to detect information sharing. We document islands of in-
formational autarky between dealers and their affiliate funds surrounded by a sea of
information sharing. (i) A dealer never trades nor shares information with its affili-
ated funds. (ii) Dealers consistently share information with their client funds, includ-
ing on days when they do not trade with each other. (iii) Affiliated funds, which are
free to share information with each other, intensely do so among themselves. From
a back-of-the-envelope calculation, establishing China Walls between affiliated funds
would eliminate $16.1 billion in trades, comprising 37% of their trades on the event
dates. Our results hold during crisis and noncrisis periods, and across granular cells
of firm and asset characteristics. We reveal remarkable regulatory capacity to control
information flows.
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1 Introduction

Banking conglomerates are rife with conflicts of interest. They manage funds and

run broker-dealers that intermediate financial markets, all while investing on their own

accounts. To limit these conflicts, regulators in the US increasingly enforce China Walls—

blunt information barriers around broker-dealers, which are particularly exposed to con-

flicts of interest.1

Enforcing China Walls is a formidable challenge. Information sharing among affili-

ates occurs in private, is plausibly deniable, and yields large conglomerate-wide payoffs.

More fundamentally, affiliates have tightly aligned incentives, precluding counterparty

litigation that is often crucial to regulatory enforcement. As such, effectively enforced

China Walls would reveal remarkable regulatory capacity to control information flows—

especially relevant today, when concerns over privacy are widespread. Are today’s China

Walls effectively enforced within banking conglomerates?

We document that they are. Our empirical challenges mirror that of the regulators: in-

formation sharing is not directly observable, and compliance in one circumstance does

not rule out violations at other times. We compare trading activities of dealers and

funds around exceptionally large trades to overcome these challenges. Our difference-in-

differences design detects information sharing between a dealer and its affiliate funds if

the funds increase trading on days that the dealer makes an exceptionally large trade rela-

tive to funds that are entirely unrelated to the dealer. Three plausible assumptions under-

pin our design. First, exceptionally large trades pinpoint arrivals of especially valuable

1“China Walls,” or the more common “Chinese Walls,” is a reference to the Great Wall of China (Gozzi,
2003). “Information barriers,” “firewalls,” “ethical screens,” and “insulation walls” are synonymous terms
that appear later. We adopt “China Walls,” because it is concise, does not have a common alternative
meaning, and is the closest to the original reference.
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private information, when there would be the strongest incentive to violate China Walls.

Second, funds increase trading activity upon receiving valuable information. Third, deal-

ers never share private information with unrelated funds that are neither their affiliates

nor clients.

We implement this design on the near universe of foreign exchange trades involving

the Israeli Shekel covering 21 million trades from 2019 to 2024. Among them, 87% are

trades in the US dollar-Shekel currency pair. Moreover, the largest dealers in the Shekel

market are identical to those in the broader US dollar market and Israeli financial regu-

lations are mainly based on US regulations. An exception is that Israel does not impose

China Walls, leaving the US regulators (whose jurisdiction reaches worldwide) as the

main enforcers of China Walls in our setting. Their rules wall off dealers from their affil-

iate funds, while leaving funds affiliated to each other free to share information among

themselves. Appendix A details the legal context.

Figure 1 illustrates our design. GS Dealer and GS Fund are affiliates. (GS, MS, and BoA

are illustrative names.) Unrelated Fund is unaffiliated and never trades with the other

firms in the figure. An event is an exceptionally large trade (event trade) by the GS Dealer

(event firm) that belongs in the top 0.1 percentile of the GS Dealer’s trades. We compare

the daily gross dollar volumes of the GS Fund (affiliate firm) and the Unrelated Fund

(control) around the event day. We conclude that the event dealers share information

with their affiliate funds if the daily volumes of the affiliate funds increase relative to the

unrelated funds around the event day.

This approach detects no information sharing from dealers to their affiliate funds nor,

reversing their roles, from funds to their affiliate dealers. Richness of our setting provides

two falsification tests. First, we verify whether our design reliably detects information
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Figure 1: Identifying Information Sharing from Dealers to Affiliate Funds

sharing where it exists. Since dealers are well known to share information with their

client funds (Barbon, Di Maggio, Franzoni, and Landier, 2019; Boyarchenko, Lucca, and

Veldkamp, 2021), a reliable design must detect information sharing between such con-

nected dealers and funds. In Figure 1, the BoA Fund is a client of the GS Dealer. Our

first falsification test compares the daily volumes of the BoA Fund (connected firm) and

the Unrelated Fund (control) around the day of the GS Dealer’s exceptionally large trade.

We consistently detect information sharing between connected dealers and funds. Sec-

ond, we exploit funds that are affiliates but not walled off from each other to determine

whether affiliates do share information with each other in the absence of China Walls.

Affiliate funds intensely share information among themselves, and thus we infer that af-

filiate dealers and funds would share information if the China Walls were absent.

Section 2 develops the design. Our key identifying assumption is that especially valu-

able information prompts exceptionally large trades. This assumption is consistent with
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standard theory (Kyle, 1985; Easley and O’Hara, 1987) and empirically holds in other

markets (Kumar, Mullally, Ray, and Tang, 2020; Pinter, Wang, and Zou, 2024). A threat

is the possibility that firms would split orders to disguise their private information. Ap-

pendix B jointly tests this assumption and the claim that our design isolates information

sharing. Consistent with these claims, exceptionally large trades predict future returns,

smaller trades do not, and we detect information sharing between connected dealers and

funds only around the large trades.

We then strip away three sources of confounding variation in trade volumes. First,

public news or aggregate shocks can simultaneously trigger the funds to increase trading

and the dealers to make exceptionally large trades. Second, the liquidity and price im-

pacts of the event trades, rather than information sharing, can induce funds to increase

trading. Because no dealer would share information with a fund that is neither an affil-

iate nor a client—and yet these unrelated funds are as exposed to the aggregate shocks

and the impacts of event trades as other funds—using the unrelated funds as controls

removes the two confounders while preserving any variation due to information sharing.

And third, we may be omitting relevant characteristics of events and funds. Our calendar

date, days-relative-to-event, and event-by-fund fixed effects eliminate any confounding

variation that is common across funds over time, or specific to a fund as long as it is

invariant over the two weeks (the event window) around the event.

Section 3 describes the data. There are 7,700 funds, 46 conglomerates that control

dealers, and 17,000 events in our sample. The dealers virtually never trade with their

affiliate funds, perhaps due to the onerous constraints of the dealers’ China Walls. Our

main analyses test whether the China Walls preempt information sharing in addition to

barring trades between affiliate dealers and funds.
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Section 4 implements our design in stacked difference-in-differences specifications

with never-treated controls of Cengiz, Dube, Lindner, and Zipperer (2019). Our analytical

samples contain millions of observations across thousands of events and firms, providing

the power to detect even tiny differences between treated and control groups. Despite

the high power, in the 11 trading days around an exceptionally large trade by an event

dealer, the daily gross dollar volumes of funds affiliated to this dealer are statistically in-

distinguishable from those of unrelated funds, differing by −0.02 standard deviation on

the event day (clustered std. error: 0.04 sd). In stark contrast, the funds connected to the

event dealer increase their volumes by a precisely estimated 1.9 sd (std. error: 0.007 sd)

on the event day relative to the unrelated funds. Likewise, around a day when an event

fund makes an exceptionally large trade, the gross volumes of its affiliate and unrelated

dealers are indistinguishable from each other, whereas its connected dealers sharply in-

crease their volumes on the event day relative to the unrelated dealers. All results remain

when we replace gross volumes with net volumes signed in the direction of the event

trade.2

Section 5 applies this design to funds affiliated to each other. On a day when an event

fund makes an exceptionally large trade, the funds affiliated to the event fund increase

their volumes by 1.7 sd (std. error: 0.2 sd) relative to the unrelated funds. Taken to-

gether, we reject information sharing between dealers and their affiliate funds—exactly

where China Walls are present—and detect extensive information sharing elsewhere,

both among affiliated funds and between dealers and their clients. We conclude that

China Walls are effectively enforced.

2We do not observe who initiated each trade. To proxy the direction of each event trade, we assume
that (i) any trade between a dealer and a fund is initiated by the fund, and (ii) for event trades between
two dealers, the event dealer initiated the trade. We focus on gross volume, because these assumptions add
noise to our net-volume estimates.
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We address two key threats to this conclusion. First, trades between dealers and their

client funds might generate mechanical increases in trading around event trades. We

exclude, from each event, any fund or dealer that trades with the event firm on or up to

five days after the event day, precluding such mechanical effects. Second, funds affiliated

to each other may be exposed to common shocks through shared dealer connections. To

remove these shocks, we flexibly control for overlaps in the sets of dealer connections

between the event fund and its affiliate funds.

Section 6 scours granular cells of key event, asset, and firm characteristics for China

Wall violations. We never detect information sharing between affiliate dealers and funds

across crisis and noncrisis periods, asset classes, currency pairs, and fund types. We con-

sistently detect information sharing among affiliated funds and between dealers and their

clients. Moreover, hedge funds respond more intensely to event trades than other funds,

and particularly so when the event trade was by another hedge fund (Table 4), echoing

evidence that hedge funds are more informed and more sensitive to information than

other funds (Di Maggio, Franzoni, Kermani, and Sommavilla, 2019; Kumar et al., 2020).

Events are more likely during crisis periods, and yet treated firms’ responses to crisis and

noncrises events are precisely equal (Table 5)—our design fully strips away aggregate

shocks and any variation that correlates with such shocks. Last, an event prompts the

largest responses by connected firms that specialize in the currency pair and asset class

of the event trade (Tables 6 and 7): homophily one would expect if the event trades in-

dicate the type of information they embody. It is hard to imagine a confounder that can

plausibly explain this rich combination of results.

Context and previous work on China Walls. The US regulators did not enforce China

Walls before 2018. Previously, banking conglomerates voluntarily adopted China Walls to
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protect against corporate liability from insider trading by their employees. (The employ-

ees themselves would remain liable.) The 2010 Dodd-Frank Act allowed US regulators

to conduct “risk-based” enforcement, under which they can prosecute firms for practices

that substantially raise the risk of a crime, even without evidence that the crime has actu-

ally occurred. The US Securities and Exchange Commission (SEC) began to exercise this

power to enforce China Walls in 2018: insufficiently maintaining China Walls itself, not

only insider trading, is now a prosecutable offense. Appendix A provides further detail.

Existing evidence on China Walls exploit samples that predate 2018. This evidence

identifies extensive violations, as legal proceedings would eventually confirm.3 We in-

stead evaluate the China Walls during the recent period of their active enforcement. As

importantly, we contribute a novel identification strategy that uses unrelated funds as

controls to isolate the effects of information sharing. We validate our strategy in condi-

tions where the China Walls are absent and information sharing is expected. Applying

this design to a large and granular dataset yields precisely estimated and robust evidence

that today’s China Walls effectively preempt information sharing.

Broader contributions. We belong to the literature on the capacity of states to regulate

firms.4 In their settings, a large extent of regulatory enforcement occurs through private

litigation by parties involved in the regulated activity (e.g., employer vs employee, in-

sider vs outside shareholder; Glaeser and Shleifer (2003), La Porta, Lopez-De-Silanes, and

Shleifer (2006)). In our setting, a China Wall violation involves affiliates under common

3Lehar and Randl (2006), Irvine, Lipson, and Puckett (2007), Seyhun (2008), Massa and Rehman (2008),
Chen and Martin (2011), Ivashina and Sun (2011), Li (2018), Li, Mukherjee, and Sen (2021), Kondor and
Pintér (2022), and Haselmann, Leuz, and Schreiber (2023) find evidence of China Wall violations in various
settings. The latest in-sample year among them is 2017.

4Regulators have greatly reduced pollution (Keiser and Shapiro, 2019; Behrer, Glaeser, Ponzetto, and
Shleifer, 2021), insider trading (Bhattacharya and Daouk, 2002), misleading financial disclosures (Green-
stone, Oyer, and Vissing-Jorgensen, 2006), and discrimination in pay (Bailey, Helgerman, and Stuart, 2024)
and access to accommodation (Cook, Jones, Logan, and Rosé, 2023).
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corporate control, eliminating the threat of counterparty litigation. Moreover, bankers of-

ten communicate in plausibly deniable ways (Peluso, 2020). Therefore, our results reveal

a remarkable regulatory capacity to control information flows beyond what is established

in prior work.

We extend the empirical literature on information diffusion in financial markets. Deal-

ers extract information from their clients’ order flow (Hortaçsu and Kastl, 2012) and leak

information to certain clients (Barbon et al., 2019; Boyarchenko et al., 2021; Chague, Gio-

vannetti, and Herskovic, 2023). More broadly, dealers act as conduits through which in-

formation diffuses throughout their trading networks (Di Maggio et al., 2019; Hagströmer

and Menkveld, 2019; Kumar et al., 2020). We identify a stark void in this informational

network driven by regulatory intervention, thereby adding China Walls as a promising

source of variation in information flows that is especially relevant today, when the finan-

cial sector is highly concentrated.

Roadmap. Section 2 develops the empirical design. Section 3 describes the data and

performs motivating analyses. Sections 4 and 5 investigate the effectiveness of China

Walls. Section 6 performs the heterogeneity analyses.

2 Design

2.1 Context

China Walls refer to a collection of rules and physical barriers that aim to preempt

the flow of material private information (MPI) to or from the walled-off subsidiaries of

banking conglomerates and their affiliates. An MPI is any information that (a) a reason-

able investor would find important for her investment decisions and (b) is not publicly
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disclosed.5 For example, proprietary analysis, inside information, or private trade re-

quests would constitute MPI. Typical China Walls require walled-off subsidiaries to be

isolated via separate entrances, opaque and soundproof barriers, and the monitoring and

recording of their employees’ communications.

New regulations since the 2008 financial crisis established today’s China Walls around

broker-dealers within banking conglomerates (and bank-owned investment advisers,

which we do not examine). Today, the US SEC routinely imposes large fines for defi-

ciencies in the dealers’ China Walls. Appendix A details relevant definitions, history and

legal precedents, impacts of the Dodd-Frank Act, and recent enforcement cases.

Empirical setting. The foreign exchange market is an over-the-counter market, in

which trades occur between dealers or a dealer and its client. The dealers are long-lived,

trades are nonanonymous, and most firms rely exclusively on one or a few relationship

dealers. Hence, reputation concerns preclude behavior frequently seen in centralized

markets, such as repeated order submissions without the intent to trade or splitting a

large trade quantity into a rapid sequence of small orders. This market operates at high

frequency, where news is rapidly incorporated into exchange rates. Therefore, we do not

expect private advantage from an MPI to last beyond a few trading days.

Our data covers the near universe of Israeli Shekel (ILS) foreign exchange transactions,

which we obtain from the Bank of Israel. The ILS market structure is identical to the other

foreign exchange markets. Indeed, 87% of ILS transactions are for the USD-ILS pair and

the ILS and the USD markets have the same largest dealers.6 More broadly, financial

5Material non-public information (MNPI) is the more commonly referred type of information in law.
The MPI includes analyses based purely on public information, whereas the MNPI expressly excludes such
analyses. We use MPI rather than MNPI since proprietary analysis is valuable private information.

6The share of USD in our sample is remarkably close to the 85% of all foreign exchange transactions that
involve the USD (Somogyi, 2022).
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regulations in Israel are largely based on the US. A peculiar Israeli law forbids Israeli

holding companies from owning both a dealer and a nondealer investment firm, as the

US Glass-Steagall Act did until its 1999 repeal. As such, the Israeli regulators neither

mandate nor enforce the China Walls—the banking conglomerates do not incriminate

themselves when reporting data at odds with their China Walls to the Bank of Israel. The

enforcers of the China Walls in our setting are the nonIsraeli regulators, especially the

US SEC whose jurisdiction extends to all banking conglomerates active in the US (every

conglomerate in our sample).

2.2 Empirical Design

We must overcome three challenges to test the hypothesis that the China Walls are

effectively enforced. First, the China Walls may be violated in circumstances that we

do not examine. In particular, the test may neglect the circumstances where China Wall

violations are the most likely to occur. Second, we need a proxy that isolates the variation

specifically due to bilateral MPI sharing, all while reliably detecting any such information

sharing. Third, the bank-owned dealers may not share MPI with their affiliates even if

their China Walls were absent, in which case enforcement is moot.

Defining events. We seek events that pinpoint when a dealer or a fund receives es-

pecially valuable MPI. Under the plausible assumption that China Wall violations are the

most likely to occur when there are the largest gains from sharing information with affili-

ates, rejecting violations during such events would also rule out violations at other times.

Standard theory shows that an informed trader submits larger trades when she holds

more valuable private information (Kyle, 1985; Easley and O’Hara, 1987). Empirically,

the trades that are unusually large compared to its trader’s other trades are particularly
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predictive of returns (Kumar et al., 2020; Pinter et al., 2024). Appendix B presents concur-

ring evidence in our setting. Therefore, we let an event be a dealer or a fund (a firm) and

a day (event day) when the event firm makes a trade (event trade) that is exceptionally

large compared to the its other trades.

Isolating information sharing. We consider an event firm i and a treated firm j such

that, if i is a dealer, then j is either an affiliate fund or a client (i.e., connected) fund. A

proxy for MPI sharing from the event firm i to the treated firm j must isolate information

that is (i) material and (ii) bilaterally shared. Information is material only if it is important

for determining the firms’ optimal portfolios. Receiving an MPI would prompt firm j

to rebalance its portfolio towards the new optimum, increasing its daily gross volume.

Alternatively, j may become more likely to trade in the direction of the price change that

the MPI predicts. Therefore, we choose increases in the gross volume of firm j to proxy

for the sharing of MPI by the event firm i to j, and confirm that our results are robust to

using net volumes signed in the direction of the event trades.

Public news
Aggregate shocks

Event
Firm

Affiliate
Firm

Other
Firms

Unrel.
Firm

Common source
E.g., shared data, connections, specialization

Direct Trading

Indirect
effects

Figure 2: Potential Confounders to Measuring Bilateral Information Sharing

To isolate bilateral MPI sharing, we remove each of the four confounders that can also
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generate the coincidence of firm i’s exceptionally large trades and increases in firm j’s

gross volume. Figure 2 illustrates the confounders. First, any direct trade between i

and j could mechanically induce both the event trade and the increased gross volume,

for instance as the large trade itself causes the increase in gross volume. This confounder

does not apply when firms i and j are affiliated or unrelated (i.e., neither affiliated nor ever

trades with i in our sample), since the former do not trade in our data and the latter do

not by definition. In the case where i and j are connected, we shut down the confounder

by excluding firm j for the events in which j traded with i on or after the event day up to

the end of the event window (five days after the event day).

Second, arrivals of public news or other aggregate shocks may trigger all firms to

trade, including the event trades. Third, event firm i’s MPI that corresponds to the event

trade may indirectly induce firm j to increase its trading activity. Either the event trade

itself or any sharing of the MPI by i to firms other than j could affect liquidity or prices

throughout the market. As these liquidity or price impacts reach firm j, they may prompt

j to increase trading. For example, if an event trade is between dealer i and another

dealer, the second dealer might contact fund j to offload the newly gained inventory.

Fund j’s gross volume would then increase if it agrees to this trade, or if the contact

reveals information to j.

We filter out the aggregate-shock and the indirect-impact channels by comparing the

gross volume of firm j and those of the firms that are unrelated to the event firm i. The

gross volumes of the unrelated firms would capture the aggregate shocks and the indirect

impacts of firm i’s event trade around the event day. At the same time, the event firm i

would not share MPI with unrelated firms. Hence, our design detects bilateral MPI shar-

ing from i to j if and only if the gross volume of j increases relative to unrelated firms on
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or after the event day.

Fourth, a source common to firms i and j, but not to the unrelated firms, may simulta-

neously trigger i’s event trade and heighten j’s gross volume. We present three examples,

in which we suppose that i and j are affiliated or connected with each other. Firms i and

j may be more likely than two unrelated firms to have common data or research sources.

They may also be more likely to specialize in the same assets, or be connected to the

same third firm. In these examples, any information from a common data source would

sometimes reach j before i, and likewise for those from asset-specific shocks or the shared

connection. This noise in timing would generate pretrends before the event dates. We

reject the presence of the common-sources channel if j and unrelated firms show parallel

trends prior to the event day.

Connected treatment. A key remaining threat is the possibility that our design does

not reliably detect bilateral MPI sharing where it exists. We exploit the stylized fact that

a connected dealer and fund extensively share information (Barbon et al., 2019; Kumar

et al., 2020; Chague et al., 2023) to falsify the reliability of our design to detect bilateral

MPI sharing. If our design is reliable, then we will detect the sharing whenever i and

j are connected to each other. Thus, we falsify the reliability of our design if the daily

gross volumes of connected firms do not increase relative to the unrelated firms on or

after the event day. We strengthen this falsification test by excluding the connected firms

that trades with the event firm on or after the event day.
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2.3 Implementation

We adopt the stacked difference-in-differences specification with never-treated con-

trols of Cengiz et al. (2019).7 An event is a firm and a date on which the firm made a

trade in the 0.1 percentile of its trades by dollar value or its largest trade if the firm made

fewer than 1,000 trades in our sample. All event trades by the same firm on the same

day are combined into a single event. A firm is treated on or after the event day within

the event window if the firm is an affiliate or a connection of the event firm. A firm is a

control if it is unrelated to the event firm and not treated in any other event during the

event window. Our event window is the 11 trading days around the event day, because

exchange rates fully incorporate private information in about a trading week (Menkhoff,

Sarno, Schmeling, and Schrimpf, 2016).

Our first regression specification is

Yejt =
5

∑
τ=−5

ατ1t=ℓe+τ A f f iliateej + δej + φt +
5

∑
τ=−5

γτ1t=ℓe+τ + εejt. (1)

The dependent variable Yejt is the gross dollar volume of firm j on calendar date t and

event e, standardized at the firm level. The affiliate treatment dummy A f f iliateej equals

1 if firm j is an affiliate of the event firm. The dummy A f f iliateej = 0 if j is unrelated to the

event firm and is not treated in any other event within the 21-day panel around event e.

The indicator variable 1t=ℓe+τ equals 1 when t equals the event day ℓe shifted by τ days,

and 0 otherwise. We control for event-by-firm, calendar date, and event date fixed effects

δej, φt, and γτ. These effects control for event-and-firm-specific factors as well as common

7This implementation yields average treatment-on-the-treated (ATT) effect estimates that always place
positive weights on all groups (Gardner, 2022), unlike those of traditional staggered two-way fixed-effects
difference-in-differences specifications (Roth, Sant’Anna, Bilinski, and Poe, 2023).
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trends over calendar and event times. We cluster standard errors by event-and-firm and

by calendar date, because our treatments are assigned event-by-firm and the incidence

of events varies over time. Our data contains the near universe of transactions in the

currency pairs we examine, as detailed in Section 3, implying a high sampling probability.

Therefore, the clustered variances likely approximates the true variances (Abadie, Athey,

Imbens, and Wooldridge, 2023).

The second specification repurposes Equation (1) to measure the MPI sharing between

connected dealers and funds,

Yejt =
5

∑
τ=−5

βτ1t=ℓe+τConnectedej + δej + φt +
5

∑
τ=−5

γτ1t=ℓe+τ + εejt. (2)

The connected treatment dummy Connectedej equals 1 if (a) firm j trades 10 or more times

with the event firm in the sample, and (b) does not trade with the event firm on the event

day and five days afterwards, t = ℓe, . . . , ℓe + 5. Condition (a) restricts the connected

firms to nonaffiliates, because exactly zero pair of affiliate dealer and fund trades 10 or

more times. Condition (b) removes any mechanical increase in the gross volumes of the

connected firms relative to the unrelated firms due to trades with the event firm. The

conditions for Connectedej = 0 and A f f iliateej = 0 are identical, and the other elements

in Equation (2) are the same as the corresponding elements in Equation (1).

We estimate each of Equations (1) and (2) twice. Either the dealers are the event firms

and we examine the daily gross volumes of the funds, or the funds are the event firms

and we examine the volumes of the dealers.
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2.4 Identification Tests

We assume that a firm trades an exceptionally large size when especially valuable ma-

terial private information arrives at the firm. The underlying claim is that firms submit

larger orders when it has more valuable private information. This claim is consistent with

standard theory (Kyle, 1985; Easley and O’Hara, 1987) and recent empirical evidence in

over-the-counter markets that larger trades by each firm are more predictive of returns

than its smaller trades (Kumar et al., 2020; Pinter et al., 2024). However, the theory on or-

der splitting (Bernhardt and Hughson, 1997) and the lack of similar evidence specifically

on the foreign exchange market question our claim.

Appendix B adjudicates our assumptions in the data. Placebo tests using small and

medium trades as event trades jointly falsify two claims. (i) Exceptionally large (0.1 per-

centile) trades indicate arrivals of especially valuable MPI. (ii) Our design isolates bilat-

eral MPI sharing, in that it yields significantly positive treatment coefficients if and only

if the event firms bilaterally share MPI with the treated firms. We define a small event as

a firm and a day when the firm makes a trade in the 99.9 to 100th percentile of its trades

by dollar volume, and a median event as the same except in the 50 to 50.1st percentile.

If informed firms do not split orders, and rather trade exceptionally large sizes to exploit

especially valuable MPI, the large trades would predict returns and smaller trades would

not. Moreover, if our design isolates information sharing, connected firms would increase

their volumes relative to unrelated firms around the dates of trades that predict returns,

and not for nonpredictive trades.

We find that the exceptionally large trades predict returns up to three days following

the trade. The small and medium trades do not predict returns. Moreover, we find zero

evidence of an increase in the gross volume of connected firms relative to unrelated firms
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around the small-event or the median-event days. We conclude that our design isolates

the sharing of especially valuable MPI.

3 Data and Descriptive Results

3.1 Data

We obtain the near universe of foreign exchange transactions involving the Israeli

Shekel from the Bank of Israel (the Bank) in the sample period January 2019 to March

2024, spanning 1,368 trading days.8 Each observation specifies the currency pair (ILS and

another currency), price, quantity, date and time,9 asset class (spot, forward, swap, or op-

tion), and the counterparty names. We exclude options due to insufficient observations

and convert all nonUSD transaction values into USD at the contemporaneous official ex-

change rate published by the Bank.

Table 1 summarizes the samples we analyze. A three-step process generates samples

whose observations are firm-by-date. First, we consolidate dealers up to the conglomer-

ate by dropping all trades between dealers affiliated to each other and combining them

under conglomerate-level labels. We do so, because a group of affiliate dealers are free

to split incoming orders and transfer assets and capital among themselves, and are thus

effectively a single economic entity. As such, consolidating affiliate dealers minimizes

8All Israeli firms, including the Israeli branches of conglomerates, must report each ILS transaction to
the Bank. Non-Israeli firms fall under the same reporting requirement if their foreign exchange transactions
in the previous year exceed $15 million per day on average, whether on their own accounts or on behalf of
clients. This reporting requirement applies to practically all significant financial firms, because any foreign
currency spot or derivative transaction is included in the reporting threshold, even if the firm rarely trades
ILS. Rules can be retrieved from https://www.boi.org.il/en/economic-roles/statistics/reports-to-bank-of-
israel/reporting-on-activity-in-the-foreign-currency-derivative/.

9We do not exploit intraday time stamps, because a large proportion of trades report 00:00:00 rather than
the actual trade time. (The Bank only requires that firms report the correct date, not time.)
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noise from nonmarket transactions that shift cash and inventory for tax or balance sheet

purposes.10 Second, we aggregate the daily gross volumes of each dealer and fund across

asset classes (i.e., spot, forward, and swap). While aggregating, we keep the notional

amount from each swap trade’s first leg and ignore its second leg to avoid double count-

ing. Third, we winsorize observations in the top 0.5 percentile by daily gross volume,

calculated separately for dealers and for funds, because their daily volume distributions

differ dramatically.

Affiliations. A four-step procedure identifies the affiliations of all firms. First, we de-

termine the affiliations of most US-based firms using the quarterly organizational hierar-

chy data accessible via the National Information Center (https://www.ffiec.gov/npw/).

We assign affiliations to firms as of last quarter, 2023, for the whole sample period, be-

cause financial firms rarely change their affiliations and typically change their legal names

when they do. Second, all firms with obviously indicative names are linked to the corre-

sponding conglomerate (e.g., “Deutsche Bank Luxembourg S.A.”). Third, the remaining

firm names are entered into ChatGPT 4.0 as a query in the form, “as of [date the firm

last appears in the sample], is [firm name] independent? If not, which holding com-

pany does [firm name] belong to?” Fourth, we manually verify each answer generated

in step three, by searching for the firm name paired with “independent” or the ChatGPT-

suggested holding company name.

10Some 8% of foreign exchange spot trades are “back-to-back” trades between affiliate dealers for ac-
counting or inventory rebalancing reasons (Bank for International Settlements, 2022). All trades by affiliate
funds are market-based, since they only trade with nonaffiliate dealers.
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Table 1: Sample Characteristics

Final Sample

All
trades

Fund
trades

Dealer
day

Fund
day

Mean daily volume
(USD millions)

29,510 2,843 19,940 2,843

Mean daily volume per firm
(USD millions)

642 3.7 433 469

Dollar value per observation
(USD millions)

2.7 1.7 635 0.34

Currency
USD 0.87 0.76 0.94 0.76
JPY 0.07 0.22 0.004 0.22
EUR 0.02 0.02 0.03 0.02

Asset class
Spot 0.36 0.50 0.32 0.50
Forward 0.13 0.40 0.11 0.40
Swap 0.50 0.10 0.58 0.10

Observations 20,832,686 2,762,406 62,974 10,643,975
All trades: Raw data set containing the near universe of Israeli Shekel transactions. Fund trades: Transactions
involving a fund. Dealer day: Dealer transactions aggregated to the daily gross dollar volume in USD;
excludes trades between dealers affiliated to each other and trades with nonfinancial firms. Fund day: Fund
transactions aggregated to the daily gross dollar volume in USD. Mean daily volume is the average daily total
dollar volume in USD billions. Mean daily volume per firm is the mean daily volume divided by the number
of firms in the sample. All Currency and Asset class figures are weighted by dollar volume.
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Table 2: Number of Unique Entities

Conglomerates Dealers Funds

US 15 92 4,826
Israeli 11 15 192
Independent – 11 6,660
Hedge funds – – 632

Total 46 229 7,775

A conglomerate is a holding company and the group of firms that the holding company ultimately controls.
“Dealers” also include brokers and broker-dealers. All dealers in our sample are broker-dealers, which
match client orders or trade on their own accounts at the their discretion. “Independent” denotes entities
that do not belong to a conglomerate. All independent dealers are Israeli, due to Israeli law that forbids
common ownership of banks and dealers.

3.2 Motivating Analyses

Three analyses motivate our main empirical design. First, Figure 3 plots the total daily

dollar volume of transactions. The dealers trade USD2.8 billion with the funds daily, of

which near precisely zero is with their affiliate funds—there are four trades between a

dealer and an affiliate fund, worth a mere USD5.51, in our sample.
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(b) Affiliate Dealers and Funds

Figure 3: Daily Gross Dollar Volumes Traded Between Dealers and Funds
Figure 3a: The sum of daily gross dollar volume in USD millions across pairs of dealer and fund that are
not affiliated with the same banking conglomerate. Figure 3b: The sum of daily gross dollar volume in USD
millions across pairs of affiliate dealer and fund. Shaded regions mark the onsets of the Covid pandemic,
the Russian Invasion of Ukraine, and the Hamas attack on Israel.
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Second, Figure 4 computes the correlation in daily gross volumes within unrelated

dealer-fund pairs. For each lag l = −10 . . . + 10 and a pair of dealer i and fund j that

are nonaffiliates and do not trade in the sample, we compute the correlation CorrGVijl

between the date t gross volume of i and date t + l gross volume of j. We average this cor-

relation across the unrelated dealer-fund pairs for each l. Figure 4a plots the results. There

are strongly positive and significant correlations in trading activity among the unrelated

dealers and funds. Absent a control group, the common shocks driving comovement

among the unrelated firms may severely contaminate measures of bilateral information

sharing.

Third, we estimate a simplified version of our main specifications (1)-(2). We com-

pare the correlations CorrGVijl within the affiliate and the connected dealer-fund pairs

against the unrelated pairs. Doing so tests whether the trading activities of affiliates and

connected firms correlate once stripped of common shocks. Our implementation uses the

regression specification

CorrGVijl = al A f f iliateij + blConnectedij + ci + dj + εijl. (3)

The dummy variable A f f iliateij equals 1 if dealer i and fund j are affiliates and 0 if they

are unrelated. The dummy Connectedij equals 1 if i and j trades 10 or more times in the

sample and 0 if they are unrelated. We exclude the trades between i and j to compute

CorrGVijl, which avoids mechanical correlations due to within-pair trades. The dealer

and the fund effects ci and dj control for time-invariant factors specific to each dealer and

each fund.

Figure 4b plots the coefficients cl and dl across l = −10 . . . 10. Daily gross volumes
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of the affiliate dealer-fund pairs are no more correlated than those of the unrelated pairs

across all lags l. In contrast, the connected dealer-fund pairs are sharply more correlated

contemporaneously than the unrelated pairs. These correlations suggest that China Walls

effectively block material information flows between walled-off firms, while information

flows freely among connected firms. Our main design isolates bilateral information shar-

ing and focuses on the dates when there is the greatest incentive to violate the China

Walls.

4 Are China Walls Effectively Enforced?

We first estimate Equations (1) and (2) selecting the dealers as the event firms and

the funds as the treated and the control firms. Figure 5a plots in blue the differences ατ

in standardized gross volume between affiliate and unrelated funds around the days of

exceptionally large trades by dealers, and in red the differences βτ between the connected

and the unrelated funds. The affiliate funds exhibit neither pretrends nor posttrends.

The connected funds show no pretrends and a positive estimate on the event day. The

event-day estimates are far apart: the affiliate funds increase their gross volumes on the

event day by −0.02 standard deviation (std. error: 0.04 sd), whereas the connected funds

increase theirs by 1.9 sd (std. error: 0.007 sd).

We interpret Figure 5a as follows. The exceptionally large trades pinpoint the arrivals

of especially valuable MPI at the dealers, and receiving MPI would prompt increases in

trading activity. The null posttrend of the affiliate funds implies that the dealers do not

share the especially valuable MPI with their affiliate funds. The positive posttrend of the

connected funds means that the dealers obtain the MPI on the days that their connected
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(a) Unrelated Pairs

(b) Affiliate and Connected Pairs using Unrelated Pairs as Controls

Figure 4: Correlations in Daily Gross Volumes within Dealer-Fund Pairs

23



funds exhibit heightened trading activity. We partition how this coincidence of MPI and

increase in gross volume could arise into the four channels other than bilateral MPI shar-

ing. The MPI may induce the dealers to trade with the connected funds, in which case the

coincidence would be mechanical. An aggregate shock affecting all firms could simulta-

neously cause both the event trade and the increase in gross volume. The MPI, the event

trade, and related trading or information sharing by the event dealers may indirectly af-

fect the connected funds as the dealers’ actions percolate throughout the market. There

may be common shocks specific to the connected dealers and funds, perhaps because they

tend to share sources of information or common thirdparty connections.

The mechanical channel is ruled out by the exclusion of funds that traded with the

event dealer on or after the event day for each event. The aggregate-shock and the

indirect-effect channels are stripped away by the unrelated fund control group, since the

unrelated funds would be exposed to the aggregate shocks and the indirect effects of the

dealers’ actions. This control would preserve any increase in gross volume due to bi-

lateral MPI sharing, because the dealers would not share MPI with the unrelated funds.

The common-shocks channel is rejected by the parallel pretrend, as the shocks common

to the connected dealers and funds would sometimes cause the connected funds’ gross

volumes to increase before the event dealers make their exceptionally large trades. Alto-

gether, only the bilateral sharing channel remains. We conclude that the dealers do not

bilaterally share MPI to their affiliate funds.

Figure 5b presents the coefficient estimates of Equations (1) and (2) where we examine

the standardized daily gross volumes of the dealers around the days when a fund makes

an exceptionally large trade. In blue are the differences ατ in the volumes between the

affiliate and the unrelated dealers around the event days. In red are the differences βτ
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between the connected and the unrelated dealers. Neither the affiliate nor the connected

dealers exhibit pretrends. The affiliate dealers do not show posttrends, and the estimated

increase in their gross volumes is precisely nil. The connected dealers increase their gross

volumes by 0.26 sd (std. error: 0.02 sd) on the event day. We conclude the funds do not

bilaterally share MPI to their affiliate dealers.

Based on the results of Figures 5 and 7, we conclude that the China Walls are effective

on the whole. Table 3 details the pooled regression counterparts to Figures 5 and 7. The

affiliate funds have precisely null response to the arrival of especially valuable informa-

tion at the dealers and the converse for the affiliate dealers to the funds.11 In contrast,

the connected dealers and funds respond strongly to each other’s information, with esti-

mated coefficients in the multiples of the affiliate coefficients. By far the most responsive

are the funds to the information from their affiliate funds. Altogether, the pooled results

confirm that the China Walls are effective enforced.

5 Do Affiliates Without China Walls Share Information?

We exploit that each banking conglomerate owns multiple funds to infer whether the

affiliate dealers and funds would share MPI if their China Walls were absent. A pair

of affiliate funds belong to the same entity, yet are not walled off. Where affiliate funds

bilaterally share MPI with each other, we infer that dealers and their affiliate funds would

also share MPI in the absence of China Walls.
11The fund-to-dealer specification has far fewer events and observations than the dealer-to-fund speci-

fication, because there are many more funds than dealers. Each event fund has no more than one affiliate
dealer and a few connected dealers, whereas each event dealer has several affiliate funds and numerous
connected funds.
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Figure 5: Coefficient Estimates from Equations (1) and (2)
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Table 3: Responses in Daily Volumes by Firms on and after the Event Day

D2F
Affiliate

F2D
Affiliate

D2F
Connected

F2D
Connected

F2F
Affiliate

Post × A f f iliate -0.024 0.012 0.23∗∗∗

[0.017] [0.028] [0.021]
Post × Connected 0.32∗∗∗ 0.034∗∗

[0.0047] [0.014]
Post × DealerOverlap 0.01∗∗∗

[0.004]
Post × A f f iliate

× DealerOverlap
0.25∗∗∗

[0.026]

Event×Firm FE Yes Yes Yes Yes Yes
Calendar Date FE Yes Yes Yes Yes Yes
Days-since-Event FE Yes Yes Yes Yes Yes
Adjusted R-squared 0.022 0.41 -0.007 0.45 0.068
Within R-squared 0 0.0001 0.0005 0.0001 0.0001
Events 7,710 7,894 7,710 7,894 7,894
Observations 89,005,179 4,156,128 42,150,672 3,614,383 12,664,366

Coefficient estimates from the pooled counterparts to Equations (1), (2) and (4). The dependent variable is
the standardized daily gross US dollar volume of a firm winsorized at the top 0.5 percentile. An event is
a firm and a day when the firm made a trade in the 0.1 percentile among its trades. Each event window
is 11 days around the event day. Affiliate treatment includes firms that belong to the same conglomerate
as the event firm. Connected treatment includes firms that trade at least 10 times with the event firm
in our sample, and do not trade with the event firm on or after the event day. Affiliate and Connected
treatments are mutually exclusive, because no dealer trades with an affiliate fund in our sample. Controls
includes firms that are unaffiliated and never trades with the event firm, and are not treated in another event
throughout the event window. We include event-by-firm, calendar date, and days-since-event fixed effects.
D2F: Dealers are the event firms and funds are the treated and the control firms. F2D: Funds are the event
firms and dealers are the treated and the control firms. F2F: All firms are funds. DealerOverlap indicates
a treated or control fund whose set of connected dealers overlaps with that of the event fund. Standard
errors in square brackets are clustered at the event-by-firm and date levels. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗

p < 0.1.
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5.1 Design and Implementation

Figure 6 depicts the design. Dotted arrows indicate trading relationships. GS Hedge

Fund’s sole dealer connection is BoA Dealer. GS Mutual Fund and the GS Hedge Fund

are affiliate funds whose dealer connections do not overlap. All funds that trade with the

MS Dealer are dropped, such as Independent Fund, to remove any confounding variation

due to overlapping dealer connections. We compare the daily gross dollar volume of the

GS Hedge Fund (the affiliate fund) to the Unrelated Fund around an exceptionally large

trade by the GS Mutual Fund (the fund event). We conclude that the enforcement of

China Walls are necessary if the daily volumes of the affiliate funds increase relative to

the unrelated funds on or after the fund event day.

GS
HedgeF

GS
MutualF

MS
Dealer

BoA
Dealer

Unrel.
Fund

Ind.
Fund

Exceptionally
Large Trade

By GS MutualF

(Event)

Event Firm

No-Wall
Affiliate

Treatment

Control Firm

Shared
Dealer

(Excluded)

Figure 6: Identification: Information Sharing Between Affiliate Funds

Several conspicuous differences between the affiliate fund pairs and the dealer-fund

pairs threaten the validity of this inference. Specifically, a dealer and a fund are likely

farther apart in size and in trading strategy than two funds. We partition the affiliate fund

28



pairs into granular cells of similar or greatly differing sizes and trading strategies to help

address this threat to inference. We reject that the China Walls are unnecessary if and only

if the gross volumes of the affiliate funds increase relative to the unrelated funds on or

after the day when a fund makes an exceptionally large trade consistently across the cells

of fund-event fund characteristics. We exclude the affiliate funds that frequently trade

with a dealer with whom the event fund also frequently trades. Removing the effects

of overlapping dealers this way prevents confounding variation due to common dealer

connections, strengthening our inference.

We apply the following specification to implement this design on the subsample of

funds:

Yejt =
5

∑
τ=−5

ντ1t=ℓe+τ A f f iliateej + δej + φt +
5

∑
τ=−5

γτ1t=ℓe+τ

+
5

∑
τ=−5

κτ1t=ℓe+τ A f f iliateejDealerOverlapej

+
5

∑
τ=−5

ητ1t=ℓe+τDealerOverlapej + εejt.

(4)

The control dummy DealerOverlapej equals 1 if the set of dealers with whom fund j trades

at least 10 times in the sample overlaps with the event fund’s analogous set of dealers, and

equals 0 otherwise. Our focus is on the coefficients ντ, which measure the MPI sharing

from the event funds to their affiliate funds without an overlapping dealer. Separate

event-date effects, γτ and ητ, flexibly control for any trend over event time specific to the

funds with or without an overlapping dealer.
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5.2 Results

Figure 5 establishes that the affiliate dealers and funds do not share material informa-

tion. (And that, if they did, our design would reliably detect it.) One interpretation is that

the China Walls are effectively enforced. The alternative is that the affiliate dealers and

funds would not share MPI even if the China Walls were absent, rendering their enforce-

ment unnecessary. We exploit that affiliate funds are not walled off from one another to

infer whether the walled-off affiliates would share information absent the China Walls.

Figure 7 presents the results from Equation (4) estimated on the subsample of funds.

In green are the differences ντ in standardized gross volume between the affiliate funds

and the other funds whose dealer connections do not overlap with the event fund around

exceptionally large trades by a fund. Despite removing the common shocks through any

overlapping dealers, the affiliate funds increase their gross volumes by a precisely esti-

mated 1.7 standard deviations (std. error: 0.2 sd) on the event date. The large size of

this response is consistent with affiliated funds being eager to share information among

themselves. In magenta are the differences ντ + κτ + ητ between the affiliate funds whose

dealer connections do overlap with the event fund and the nonaffiliate nonoverlapping

funds. As one might expect, incorporating overlapping dealer effects dramatically raises

the event date response, to 2.6 sd (std. error: 0.3 sd).

6 Heterogeneity

Our heterogeneity exercises aim to test the robustness of the China Walls. It is partic-

ularly important to test the robustness of our affiliate fund-to-fund results: Where even

the affiliate funds only share MPI under special contexts, there is high likelihood that the
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Figure 7: Affiliate Fund Response to Event Fund Information

affiliate dealers and funds would not share MPI absent the China Walls.

To do so, we repeat the analyses of Section 4 across cells of fund types, currency pair,

and asset class (i.e., spot, forward, or swap), and for event during crisis and noncrisis

periods. Since our main specification yields a null result, we maximize the power to

detect deviations from the null by interacting dummy variables corresponding to each

characteristic with the complete set of terms in the pooled counterparts of Equations (1),

(2) and (4). (Rather than splitting our sample across those characteristics.) We examine

both event-level and firm-level characteristics. The dummy HedgeFund = 1 if the treated

or control firm is a hedge fund, and HedgeFundEvent = 1 if the event firm is a hedge

fund. Other firm-level dummies indicate whether a firm’s share of trades in a currency

pair or asset class is greater than the median across firms, separately for dealers and for

funds. Event-level dummies indicate whether the event trade was in a given currency

pair or asset class, and whether the event occurred during the crisis periods following the
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2020 Covid shock, the 2022 Russian invasion of Ukraine, and the 2023 Hamas attack.

6.1 Hedge Funds versus Other Funds

Table 4 separates the responses of hedge funds and nonhedge funds to events by

hedge funds and nonhedge funds.

6.2 Crisis Periods

Table 5 compares the coefficient estimates for the events during crisis and noncrisis

periods. The crisis periods span Covid (February 1st to March 31, 2020), the Russian

Invasion of Ukraine (February 16 to March 8, 2022), and the Hamas Attack (September 27

to October 17, 2023).

6.3 Currency Pairs and Asset Classes

Tables 6 and 7 present the treated firms’ responses split by currency pair and asset

class. Each table cell is the increase in the treated firms’ daily gross volumes relative to

the unrelated firms on and after the event day, where the firms’ specializations and the

events belong to the currency pair or asset class specified for the row.

To arrive at each estimate in Table 6, we first run the pooled counterparts to Equa-

tions (1), (2) and (4) augmented with the complete set of interactions involving four

dummies: USDFirm f = 1 if the firm’s dollar-value share of trades in USD-ILS pair

over our sample exceeds the median across firms (i.e., the firm “specializes in USD”),

USDEvente = 1 if the event trade (or any event trade for every event with multiple

event trades) was for USD-ILS, and NonUSDFirm f and NonUSDEvente are defined
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Table 4: Responses by Fund Type

D2F
Affiliate

F2D
Affiliate

D2F
Connected

F2D
Connected

F2F
Affiliate

Post × A f f iliate -0.023
[0.018]

0.026
[0.030]

0.157∗∗∗

[0.022]

Post × A f f iliate
× Hedge Fund

-0.0068
[0.045]

0.176
[0.32]

Post × A f f iliate
× HF Event Trade

0.024
[0.14]

0.047
[0.14]

Post × Connected 0.122∗∗∗

[0.0036]
0.029∗

[0.016]

Post × Connected
× Hedge Fund

0.364∗∗∗

[0.012]

Post × Connected
× HF Event Trade

0.112∗∗∗

[0.033]

Post × A f f iliate
× HF Event Trade
× Hedge Fund

2.21∗∗∗

[0.39]

Event×Firm FE Yes Yes Yes Yes Yes
Calendar Date FE Yes Yes Yes Yes Yes
Days-since-Event FE Yes Yes Yes Yes Yes
Adjusted R-squared 0.022 0.457 -0.007 0.449 0.049
Within R-squared 0 0.0001 0.0003 0.0002 0.0001
Events 7,710 7,894 7,710 7,894 7,894
Observations 89,005,179 4,156,128 42,150,672 3,614,383 12,664,366

Coefficient estimates from the pooled counterparts to Equations (1), (2) and (4). The dependent variable is
the standardized daily gross US dollar volume of a firm winsorized at the top 0.5 percentile. An event is
a firm and a day when the firm made a trade in the 0.1 percentile among its trades. Each event window
is 11 days around the event day. Affiliate treatment includes firms that belong to the same conglomerate
as the event firm. Connected treatment includes firms that trade at least 10 times with the event firm
in our sample, and do not trade with the event firm on or after the event day. Affiliate and Connected
treatments are mutually exclusive, because no dealer trades with an affiliate fund in our sample. Controls
includes firms that are unaffiliated and never trades with the event firm, and are not treated in another
event throughout the event window. We include event-by-firm, calendar date, and days-since-event fixed
effects. D2F: Dealers are the event firms and funds are the treated and the control firms. F2D: Funds are
the event firms and dealers are the treated and the control firms. F2F: All firms are funds. Below: F2F
estimates exclude treated and control funds whose dealer connections overlap with the event fund. HF
Event Trade is an event whose event trade was by a hedge fund. Standard errors in square brackets are
clustered at the event-by-firm and date levels. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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Table 5: Responses to Events During Crisis and Noncrisis Periods

D2F
Affiliate

F2D
Affiliate

D2F
Connected

F2D
Connected

F2F
Affiliate

Post × A f f iliate -0.021
[0.018]

0.012
[0.028]

0.226∗∗∗

[0.062]

Post × A f f iliate
× Crisis

-0.055
[0.076]

-0.032
[0.095]

-0.022
[0.201]

Post × Connected 0.319∗∗∗

[0.005]
0.033∗∗

[0.015]

Post × Connected
× Crisis

0.012
[0.026]

-0.006
[0.044]

Post × DealerOverlap 0.014
[0.012]

Post × A f f iliate
× DealerOverlap

0.264∗∗∗

[0.073]

Event×Firm FE Yes Yes Yes Yes Yes
Calendar Date FE Yes Yes Yes Yes Yes
Days-since-Event FE Yes Yes Yes Yes Yes
Adjusted R-squared 0.022 0.457 -0.007 0.449 0.033
Within R-squared 0 0.0001 0.0005 0.0002 0.0002
Crisis Events 440 3,303 440 3,303 3,303
Total Events 7,710 7,894 7,710 7,894 7,894
Observations 89,005,179 4,156,128 42,150,672 3,614,383 12,664,366

Coefficient estimates from the pooled counterparts to Equations (1), (2) and (4). The dependent variable is
the standardized daily gross US dollar volume of a firm winsorized at the top 0.5 percentile. An event is
a firm and a day when the firm made a trade in the 0.1 percentile among its trades. Each event window
is 11 days around the event day. Affiliate treatment includes firms that belong to the same conglomerate
as the event firm. Connected treatment includes firms that trade at least 10 times with the event firm
in our sample, and do not trade with the event firm on or after the event day. Affiliate and Connected
treatments are mutually exclusive, because no dealer trades with an affiliate fund in our sample. Controls
includes firms that are unaffiliated and never trades with the event firm, and are not treated in another
event throughout the event window. We include event-by-firm, calendar date, and days-since-event fixed
effects. D2F: Dealers are the event firms and funds are the treated and the control firms. F2D: Funds are
the event firms and dealers are the treated and the control firms. F2F: All firms are funds. DealerOverlap
indicates a treated or control fund whose set of connected dealers overlaps with that of the event fund.
Crisis: Event occured during the beginnings of Covid pandemic, the Russian Invasion of Ukraine, or the
Hamas-Israeli War. Standard errors in square brackets are clustered at the event-by-firm and date levels.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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analogously. We separately compute the medians for dealers and for funds when as-

signing USDFirm f and NonUSDFirm f . We further interact the NonUSD dummies with

MatchingNonUSDe f , which equals one if NonUSDFirm f = NonUSDEvente = 1 and the

firm’s currency specialization is in the currency of the event trade. Table 6 displays the ap-

propriate sums of the estimated coefficients, and uses the coefficients’ covariance matrices

to obtain the standard errors of those sums. The estimate in the USD Event Trade-USD

Firm by D2F Connected cell, for example, is the sum of coefficients that remain when we

set USDFirm f = USDEvente = 1 and NonUSDFirm f = NonUSDEvente = 0.

Table 7 estimates are calculated in the same way as Table 6, except using dummies

corresponding to spot, forward, and swap asset classes, rather than currency pairs.
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Table 6: Responses by Currency

D2F
Affiliate

F2D
Affiliate

D2F
Connected

F2D
Connected

F2F
Affiliate

USD Event Trade
-USD Firm

-0.019
[0.035]

0.021
[0.073]

0.376∗∗∗

[0.006]
0.034∗

[0.019]
0.561∗∗∗

[0.219]
USD Event Trade

-NonUSD Firm
-0.029
[0.021]

-0.077
[0.080]

0.280∗∗∗

[0.004]
0.038∗

[0.022]
0.194∗∗∗

[0.067]

NonUSD Event Trade
-USD Firm

0.041
[0.033]

0.122
[0.108]

0.121∗∗∗

[0.007]
-0.062
[0.052]

0.313∗∗∗

[0.097]
NonUSD Event Trade

-NonUSD Firm
(Matching Currency)

-0.074
[0.257]

0.029
[0.213]

0.391∗∗∗

[0.019]
-0.010
[0.045]

0.462∗∗∗

[0.167]

NonUSD Event Trade
-NonUSD Firm
(Nonmatching)

-0.028
[0.030]

-0.033
[0.063]

0.137∗∗∗

[0.005]
0.007
[0.070]

0.225∗∗∗

[0.087]

Adjusted R-squared 0.022 0.290 -0.016 0.449 0.033
Within R-squared 0 0.0001 0.0011 0.0002 0.0002
Events 7,710 7,894 7,710 7,894 7,894
Observations 89,005,179 4,156,128 42,150,672 3,614,383 12,664,366

Coefficient estimates from the pooled counterparts to Equations (1), (2) and (4). The dependent variable is
the standardized daily gross US dollar volume of a firm winsorized at the top 0.5 percentile. An event is
a firm and a day when the firm made a trade in the 0.1 percentile among its trades. Each event window
is 11 days around the event day. Affiliate treatment includes firms that belong to the same conglomerate
as the event firm. Connected treatment includes firms that trade at least 10 times with the event firm
in our sample, and do not trade with the event firm on or after the event day. Affiliate and Connected
treatments are mutually exclusive, because no dealer trades with an affiliate fund in our sample. Controls
includes firms that are unaffiliated and never trades with the event firm, and are not treated in another
event throughout the event window. We include event-by-firm, calendar date, and days-since-event fixed
effects. D2F: Dealers are the event firms and funds are the treated and the control firms. F2D: Funds
are the event firms and dealers are the treated and the control firms. F2F: All firms are funds. Below:
F2F estimates exclude treated and control funds whose dealer connections overlap with the event fund.
USD Event Trade is an event whose event trade was a USD trade. USD Firm is a treated or control fund
(dealer) whose share of trades by dollar volume involving the USD is above the median across all funds
(dealers). Standard errors in square brackets are clustered at the event-by-firm and date levels. ∗∗∗ p < 0.01,
∗∗ p < 0.05, ∗ p < 0.1.
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Table 7: Responses by Asset Class

D2F
Affiliate

F2D
Affiliate

D2F
Connected

F2D
Connected

F2F
Affiliate

Spot Event Trade
-Spot Firm

0.013
[0.021]

-0.031
[0.049]

0.520∗∗∗

[0.008]
0.068

[0.049]
0.203∗∗∗

[0.029]
Spot Event Trade

-Forward Firm
0.044

[0.035]
0.026

[0.055]
0.323∗∗∗

[0.009]
0.049∗∗

[0.023]
0.250∗∗∗

[0.044]
Spot Event Trade

-Swap Firm
0.007

[0.044]
0.041

[0.097]
0.318∗∗∗

[0.015]
0.028

[0.054]
0.174∗∗

[0.088]

Forward Event Trade
-Spot Firm

-0.052
[0.040]

-0.104
[0.081]

0.226∗∗∗

[0.010]
0.118∗∗

[0.050]
0.248∗∗∗

[0.038]
Forward Event Trade

-Forward Firm
-0.082
[0.066]

0.004
[0.066]

0.241∗∗∗

[0.012]
0.099∗∗∗

[0.027]
0.300∗∗∗

[0.056]
Forward Event Trade

-Swap Firm
0.026

[0.112]
-0.200
[0.157]

0.134∗∗∗

[0.019]
0.079

[0.055]
0.301∗∗

[0.134]

Swap Event Trade
-Spot Firm

-0.039
[0.026]

0.149
[0.147]

0.219∗∗∗

[0.005]
0.019

[0.054]
0.246∗∗∗

[0.073]
Swap Event Trade

-Forward Firm
-0.029
[0.027]

0.240
[0.258]

0.237∗∗∗

[0.006]
-0.000
[0.031]

0.224∗

[0.137]
Swap Event Trade

-Swap Firm
-0.003
[0.030]

0.280
[0.412]

0.485∗∗∗

[0.009]
-0.020
[0.059]

0.645∗

[0.338]

Event×Firm FE Yes Yes Yes Yes Yes
Calendar Date FE Yes Yes Yes Yes Yes
Days-since-Event FE Yes Yes Yes Yes Yes
Adjusted R-squared 0.030 0.489 -0.007 0.449 0.051
Within R-squared 0 0.0001 0.0007 0.0002 0.0002
Events 7,710 7,894 7,710 7,894 7,894
Observations 89,005,179 4,156,128 42,150,672 3,614,383 12,664,366

Coefficient estimates from the pooled counterparts to Equations (1), (2) and (4). The dependent variable is
the standardized daily gross US dollar volume of a firm winsorized at the top 0.5 percentile. An event is
a firm and a day when the firm made a trade in the 0.1 percentile among its trades. Each event window
is 11 days around the event day. Affiliate treatment includes firms that belong to the same conglomerate
as the event firm. Connected treatment includes firms that trade at least 10 times with the event firm
in our sample, and do not trade with the event firm on or after the event day. Affiliate and Connected
treatments are mutually exclusive, because no dealer trades with an affiliate fund in our sample. Controls
includes firms that are unaffiliated and never trades with the event firm, and are not treated in another
event throughout the event window. We include event-by-firm, calendar date, and days-since-event fixed
effects. D2F: Dealers are the event firms and funds are the treated and the control firms. F2D: Funds are
the event firms and dealers are the treated and the control firms. F2F: All firms are funds. Below: F2F
estimates exclude treated and control funds whose dealer connections overlap with the event fund. Event
Trades are separated by asset class. Spot Firm is a treated or control fund (dealer) whose share of trades by
dollar value involving spot trades is above the median across all funds (dealers). Forward Firm and Swap
Firm are defined analogously. Standard errors in square brackets are clustered at the event-by-firm and
date levels. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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Appendix

A Detailed Context

This section provides detailed institutional context with a focus on the US.

A.1 Definitions

A banking conglomerate is a group of firms controlled by the same holding company and

that includes a depository institution (i.e., a bank). A financial conglomerate is a broader

term encompassing any such groups that includes firms offering financial services as its

primary activity. We write “financial conglomerate” when discussing the period up to the

2000s, when most financial conglomerates became banking conglomerates, and “banking

conglomerates” elsewhere.

Figure 8 summarizes the components of a banking conglomerate. Their services in-

cludes deposits, lending, insurance, asset management (i.e., investing clients’ capital),

proprietary trading (investing own capital), brokering (matching client orders) and deal-

ing (absorbing client orders onto inventory), investment analysis and advising, under-

writing (asset issuance), corporate advising (on mergers and acquisitions and other strate-

gic decisions), and payments and trade finance. A conglomerate partitions these services

into insurers, commercial banks (deposits, loans), investment banks (underwriting, cor-

porate advising), investment funds (asset management), broker-dealers (brokering, deal-

ing, analysis, proprietary trading), and investment advisers.

All regulations against the misuse or leakage of financial information target material

non-public information (MNPI). Information is MNPI if its public disclosure would ap-
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Commercial banks

• Loans
• Deposits
• Payments, transfers

Investment banks

• Corporate advising
• Underwriting

Broker-dealers

• Market making
• Analysis
• Proprietary trading

Investment advisers

Investment funds

• Hedge funds
• Private equity funds
• Mutual funds
• Pension funds, etc.

Insurers

No cross-subsidization China Walls Volcker Rule

Figure 8: Stylized Banking Conglomerate and Relevant Legal Restrictions
Green dotted lines indicate restrictions on transactions and transfers: Banking laws, fiduciary duty to in-
vestors, and state-level insurance laws bar commercial banks, investment funds, and insurers from trans-
ferring capital to affiliates or trading with them at unfavorable terms. Red solid lines indicate the China
Walls that aim to block the flow of information around subsidiaries in which conflicts of interest concen-
trate: Broker-dealers and investment advisers are required to prevent their employees interacting with the
employees of affiliates. Orange fonts highlight the Volcker Rule restrictions on proprietary trading and
ownership of hedge funds and private equity funds by banking conglomerates.

preciably affect market prices. In practice, common-law courts treat as MNPI any non-

publicly disclosed information that reasonable investors in the relevant securities would

find important for their investment decisions. For example, insider earnings information

or outstanding order flows of clients are MNPI.12 Possessing, sharing, or acting on MNPI

is not generically illegal. However, financial intermediaries owe legal duties over MNPIs,

as we soon elaborate.

The China Walls are blunt internal barriers set around subsidiaries with especially high

risk of MNPI misuse. The Walls include both physical barriers and rules, typically:

• Separate offices, elevators, and entry ways for walled-off affiliates, with opaque and

soundproof physical barriers when located on the same floor.

12Analyses of MNPI are MNPI, whereas analyses of publicly available information are not.
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• Cool-down periods for employees transferring between walled-off affiliates.

• Watch lists that prohibit employees from trading or advising on the listed securities.

• Records of every instance where an “over-the-wall” executive (who oversees mul-

tiple affiliates walled off from each other) receives MNPI from any subsidiary, and

requirement that the executive recuse themselves from any business related to the

MNPI.

• Monitor and retain all business-related emails and messages sent by employees, and

review those containing MNPI.

• Contingency plans when MNPI leaks through the China Walls, and the appointment

of officers responsible for enforcing the Walls and handling the contingencies.

These restrictions on employee interactions effectively ban transactions between walled-

off affiliates.

A.2 Key Regulations on Banking Conglomerates

The markings in Figure 8 indicate each key regulation on the banking conglomer-

ates. Two concerns underlie the regulations. First, the conglomerates may divert publicly

insured deposits or insurance premiums towards risky trades or to cross-subsidize affil-

iates, thereby shifting risk onto the state or the insureds. Second, the conflicts of interest

inherent in combining intermediation, advisory, and trading functions could disadvan-

tage retail investors and undermine trust in financial markets.

Three constraints on banking conglomerates address these concerns. First, a bank

or an insurer cannot cross-subsidize affiliates. The US Regulation W (and similar rules
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elsewhere) limit the outstanding value of bank-to-affiliate transactions to 20 percent of

the bank’s capital and 10 percent with any single affiliate.13 These trades must occur at

prevailing market prices and under punitive collateral requirements. Moreover, banks

cannot trade securities issued by its affiliates, accept them as collateral, nor guarantee a

trade, loan, or securities issuance that involves an affiliate. Analogous rules on insur-

ers, which are harmonized across the US yet enforced by state authorities, prevent their

capital being used to subsidize affiliates (Hamilton, 2011).

Second, the Volcker Rule restricts banking conglomerates from proprietary trading

and owning risky investment funds. Specifically, a banking conglomerate cannot use its

own capital to make short-term profit-seeking trades. The Rule also limits its ownership

stake and exposure to hedge funds and private equity funds. Broad exemptions apply.

The Rule exempts the trades linked to market making by broker-dealers and any trade

held for more than 60 days. Further, hedge funds and private equity funds active entirely

outside the US are exempt and, within the US, a conglomerate may sponsor and control

such funds if it holds less than 3 percent of the funds’ assets. Therefore, most banking

conglomerates contain hedge funds and considerable scope remains for bank-affiliated

broker-dealers to trade on private information using own capital.

Third, as we elaborate next, the China Walls around broker-dealers and around invest-

ment advisers seek to minimize information leakage surrounding these firms. Statutes

single out investment advisers for their large potential impact on investment decisions.

The broker-dealers are singled out, because their role as intermediaries provide constant

stream of privileged information gleaned from their clients’ orders. Under the argument

13Outstanding transaction value include loans, face value of guaranteed assets or liabilities, and gross
purchases from affiliates. For example, purchasing $1 million of an asset from an affiliate would raise the
outstanding value by $1 million until the bank sells $1 million of the same asset back to that affiliate. (Sales
to other affiliates or of other assets do not affect the outstanding value generated by this purchase.)
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that broker-dealers leaking this information to affiliate funds or receiving inside informa-

tion from affiliates would place the investing public at a sharp disadvantage, preventing

such information flows is necessary to maintain trust and participation in financial mar-

kets.

A.3 China Wall Enforcement Over Time

Origins. Under common-law tradition, insider trading on behalf of clients was en-

couraged. Brokers and dealers were expected to use all information that came into their

possession, and further solicit inside information, to fulfill their fiduciary duty. This ex-

pectation was upended in 1961, when a landmark judgement held each conglomerate

liable for damages incurred by the investing public due to trades based on its MNPI. The

ruling demands that the intermediaries holding MNPI either publicly disclose or take no

action whatsoever related to the MNPI. Subsequent court rulings placed the full burden

of avoiding incompatible duties onto the conglomerates.14

Financial conglomerates were in an impossible legal jeopardy. Beyond fiduciary duty

and the new duty to the investing public, the agency principle requires the firms acting

as agents to safeguard the private information of their principal (Tuch, 2014). Suppose

a conglomerate owns a dealer and a mutual fund, and the dealer receives a large trade

request from a client hedge fund—an MNPI. By fiduciary duty, the dealer ought to share

this MNPI with the mutual fund for the benefit of the fund’s investors. Yet, doing so

14A typical case is Black and Shearson v. Hammill Co. (Black and Shearson, Hammill Co., 1968) which
rules, “conflict in duties is the classic problem encountered by one who serves two masters. It should not
be resolved by weighing the conflicting duties; it should be avoided in advance [..] or terminated when it
appears.” The judgement upheld awards of $25 thousand (1968 dollars) each to two customers of a dealer,
which sold debentures of a failing firm whose board included a partner at the dealer’s parent company.
The conflicting duties were the dealer’s fiduciary duty to its customers and the partner’s duty to keep the
inside information of the failing firm confidential.
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would expose the conglomerate to liability if the mutual fund trading on the MNPI cause

losses to some traders. This liability can be avoided only by publicly disclosing the hedge

fund’s trade request, in violation of the agency principle. These incompatible duties left

financial conglomerates in near-permanent state of legal liability.

The China Walls provided a way out. In 1968, the US Securities and Exchange Com-

mission (SEC) began offering safe harbor from liability for the conglomerates that im-

plement sufficiently strict China Walls, as determined by the SEC.15 The logic is that

walled-off subsidiaries can be considered separate entities for the purpose of determining

whether a legal duty has been breached. Continuing the example, the dealer would not

owe fiduciary duty to the investors of the affiliate mutual fund if this fund were walled off

from the dealer. The US financial conglomerates widely adopted the China Walls, which

became broadly standardized according to SEC guidelines. Financial conglomerates in

other jurisdictions followed, whether through their US operations or regulatory standard-

ization (in Australia, Canada, France, Germany, Japan, Switzerland, and the UK).

Pre-2008 crisis legal status. A 1980 US Supreme Court case (Chiarella v. United States)

replaced the constellation of duties with one overarching duty to “disclose or abstain.” A

person has the duty to disclose or abstain from acting on an MNPI when: (a) she owes

fiduciary duty to the source of the MNPI; and (b) the action would give her a personal

benefit.

The 1980s also saw the deregulation of financial conglomeration in the US and the UK.

The arguments were that full-service financial conglomerates would generate economies

of scope and be more competitive versus less regulated foreign competitors. Because

the duty to disclose or abstain might render full-service conglomerates nonviable, new

15Alternative means to avoid incompatible-duty liabilities, such as obtaining client consent to waive fidu-
ciary duties, are likely ineffective under most circumstances (Tuch, 2014).
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statutes explicitly incorporated the China Walls as safe harbor and broadened their le-

gal protections (Brooke, Burrows, Faber, Harpum, and Silber, 1995, p. 98).16 Suppose

a fund consistently earns large profits whenever an affiliate dealer receives large order

flows. Under the new statutes, presence of a China Wall between the dealer and the fund

would protect the conglomerate against liabilities to the dealer’s clients and to the fund’s

counterparties.17

Pre-2008 crisis regulatory regime. The China Walls were initially an legal benefit avail-

able to the banking conglomerates—not a regulatory requirement. As such, the China

Walls enforcement was purely reactive, occuring in the course of assigning liability upon

the discovery of fraud or breach of duty. Indeed, no US regulator proactively evalu-

ated the China Walls between 1990 and 2012, the years when the SEC reviewed the Walls

within broker-dealers as a research exercise.18 The prosecutions over the LIBOR scandal

highlights the nonobligatory status of China Walls precrisis: While each settlement with

an implicated banking conglomerate often delves into its China Walls, the sole purpose

of doing so were to determine the degree of the conglomerate’s legal liability for fraud

and insider trading. Lacking sufficient China Walls was not an offence in itself.

Further, financial regulators had more limited enforcement powers. Imposition of

large penalties or punishment of individuals required court judgement, with 5-year

16The UK removed most restrictions on financial conglomeration in 1986. The US gradually weakened
the Glass-Steagall Act provisions throughout the 1980s and 90s, until largely repealing the Act in 1999. The
UK Financial Services Act 1986 (FSA) and the US Insider Trading and Securities Fraud Enforcement Act
1988 (ITSFEA) explicitly provide safe harbor from a wide range of liabilities to the financial conglomerates
that adopt China Walls.

17The China Walls grant similar protection elsewhere. For instance, in a landmark Australian case, ASIC
v. Citigroup (2007), Citigroup’s trading arm purchased one million shares of a target firm one day before
its acquisition announcement, in a deal where Citigroup’s investment bank was advising the acquirer. The
judge dismissed the case, on the basis that the China Wall between Citigroup’s trading and investment
bank arms was sufficient to preclude conflict of interest (Hanrahan, 2007).

18The 1990 review was in response to the 1998 ITSFEA Act that explicitly gave safe harbor to walled-off
broker-dealers. The 2012 review was in response to the Dodd-Frank Act.
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statute of limitations. A firm that aided a violator could only be prosecuted if the firm

knowingly assisted in the violation, a high legal bar. Most importantly, regulatory action

required the evidence of actual fraud or breach of duty. Engaging in transactions with a

high risk of fraud or duty breach, or failing to maintain China Walls that could greatly

suppress the misuse of MNPI were not themselves actionable by regulators.

Current Regulatory Regime. The US Dodd-Frank Act 2010, and partly coordinated laws

elsewhere, dramatically reshape the enforcement of China Walls today. The key change

is the “risk-based” enforcement powers granted to financial regulators. Rather than re-

quiring actual illegality before the regulators can act, Dodd-Frank gave them the ability

to prosecute behavior that raises the risk of fraud or duty breaches. Moreover, a regulator

can now prescribe corporate organization and internal rules that the regulator believes

necessary to cap the risk of illegality to a reasonable level.

Today’s China Walls form a heavily enforced risk-based regulatory prescription. The

landmark case is the SEC’s 2018 settlement with Mizuho Securities in which Mizuho paid

$1.25 million partly for failing to maintain information barriers between its broker-dealer

and hedge fund trading desks (US Securities and Exchange Commission, 2018). This case

began a series of prosecutions by the SEC where the key issue was the effectiveness of

the China Walls itself (Barrack, Moskowitz-Hesse, Richards, and Cox, 2020). As an on-

going example, in 2021, the SEC began a proactive sweep of monitoring and retension of

business-related communication among employees across all broker-dealers and invest-

ment advisors. The first consequent settlement included a $125 million fine on Morgan

Stanley for their failure to retain all business-related messages sent by its broker-dealer

employees on their private devices (US Securities and Exchange Commission, 2021). As of

early 2024, over $2 billion in fines have been meted out to dozens of broker-dealers and
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investment advisors over similar failures. Similarly, the SEC charged Virtu Financial in

2024 merely for having a database accessible to both broker-dealer and nonbroker-dealer

employees—despite producing no evidence that any MNPI was leaked (US Securities and

Exchange Commission, 2024). Therefore, following Dodd-Frank, the regulatory regime

over China Walls morphed from reactive to proactive.

B Placebo Results

Two exercises jointly test two identifying assumptions that: (a) Exceptionally large

trades pinpoint the arrivals of especially valuable MPI; and (b) our design yields a signif-

icant and positive coefficient at t = 0 if and only if the event firms bilaterally share MPI

with the treated firms.

The first exercise is to compute the price impacts of exceptionally large, median (50 to

50.1st percentile among the event firm’s trades by dollar value), and exceptionally small

(99.9 to 100th percentile) trades. We do not observe who initiated each trade. Instead,

under the intuition that net volumes determine prices (Kyle, 1985), we net all trades in

the given percentile in each day separately for funds and dealers. To sign each event

trade, we assume, for each dealer-fund trade, that the fund was the initiator. We assume

that the event dealer was the initiator for each interdealer trade.

A three-step procedure obtains the price impact of firm type k, firm’s trade-size per-

centile p, and cumulative return horizon ℓ. First, we convert the net dollar volumes on

day t into trade-direction dummies dt,k,p ∈ {−1, 0, 1}, for k ∈ {fund, dealer} and per-

centile p ∈ {[0, 0.1], [50, 50.1], [99.9, 100]}. The dummy dt,k,p = −1 if the day’s net volume

is negative, dt,k,p = 1 if its positive, and zero otherwise. Second, we calculate the cu-
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mulative returns Rt,t+ℓ between t and t + ℓ, ℓ ∈ {0, . . . , 9}, using Bloomberg benchmark

exchange rates. Third, the price impact is the coefficient ρk,p,ℓ in the time-series regression

(5):

Rt,t+ℓ = αk,p,ℓ + ρk,p,ℓ · dt,k,p + εt,k,p,ℓ. (5)

Figure 9 plots the price impact estimates. The net volumes from exceptionally large trades

predict future returns, whereas the median and the small trades do not.

The second exercise replicates Figures 5 and 7, except redefining an event to be a day

when a firm makes a median or a small trade. As Figure 10 depicts, across all specifica-

tions, every coefficient estimate is insignificant at the 95% confidence level. Combined

with Figures 5 and 9, these results show that the daily gross volumes of connected firms

and non-walled-off affiliate funds increase only in response to the trades that are predic-

tive of returns. We conclude that the exceptionally large trades pinpoint the arrivals of

valuable MPI, and that the bilateral sharing of the valuable MPI drives our results.
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Figure 9: Price Impact Estimates
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Figure 10: Placebo Estimates
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Hagströmer, B. and A. J. Menkveld (2019). Information Revelation in Decentralized Mar-
kets. Journal of Finance 74(6), 2751–2787.

Hamilton, L. (2011, February). US - NAIC Adopts Modified Insurance Holding Company
System model Act and regulation. Global Corporate Insurance & Regulatory Bulletin.

Hanrahan, P. F. (2007, December). ASIC v Citigroup: Investment Banks, Conflicts of Interest,
and Chinese Walls, pp. 117–142. London: IMPERIAL COLLEGE PRESS.

Haselmann, R. F. H., C. Leuz, and S. Schreiber (2023, March). Know Your Customer:
Informed Trading by Banks.
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1 Introduction

The interaction and alignment between financial market efficiency and real efficiency

constitute a long-standing topic in financial economics, as recently highlighted in studies on

feedback effects (Goldstein et al., 2013; Goldstein and Yang, 2019; Goldstein, 2023). Unlike

traditional theories on price formation (Grossman and Stiglitz, 1980; Hellwig, 1980; Glosten

and Milgrom, 1985; Kyle, 1985), here the information flow is bi-directional: stock prices

not only aggregate information from firms, but also contain new information effectively

aggregated from traders, which real decision makers (e.g., managers) learn about and use to

improve the efficacy of their decisions (e.g., investments and productions).

Against such a backdrop, we revisit the link between firm competition and real efficiency

in the presence of stock market feedback. We show that the interaction between the financial

market and the product market can undermine the positive effects of competition on real

efficiency, contrary to conventional wisdom. Through a parsimonious model in which firm

productions are endogenous to stock trading because of the informational feedback from

stock prices, we provide new insights into competition and antitrust regulation.

Specifically, we consider a group of identical firms, each supervised by a manager, com-

peting in a standard Cournot setting. The production decision of each firm depends on

the assessment of uncertain market prospects, which managers can learn from stock prices.

Meanwhile, stock prices aggregate the costly private information acquired by speculators

who are incentivized by potential trading profits in financial markets. Firm managers then

use the information extracted from stock prices to guide production decisions, which in turn

affects firm valuation. The reliance of production decisions on stock prices establishes the

feedback effect of the financial market on the real economy.

It is well known that firm competition increases total welfare by reducing market power

concentration when firms engage in Cournot competition, which justifies the validity of an-

titrust regulations related to M&As, for example. However, when these firms are publicly

traded, a countervailing force arises: intensified competition can reduce the information con-

tent of stock prices and decrease real efficiency. Therefore, intensified competition could

generate a loss in total welfare rather than gains. Intuitively, with informational feedback,

intensified competition generates both direct and indirect effects on total welfare. The direct

effect entails the welfare gain as competition intensifies, reminiscent of that in conventional

Cournot competition; the indirect effect comes from managerial learning from stock prices
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that aggregate individual speculators’ information. Because intensified competition generally

curbs the incentive for speculators to produce information, this translates into reduced in-

formation acquisition and incorporation into real decisions. A negative relationship between

product market competition and total welfare ensues when the indirect effect is dominant.

The key mechanism behind the potential negative relationship between competition and

welfare stems from feedback effects that influence the allocative efficiency of resources in

production in uncertain environments. Managers set the capacity based on their estima-

tion of future market prospects, relying on information learned from the stock market. In

cases of managerial underestimation of market prospects, weaker competition enhances the

informativeness of stock prices, correcting managers’ downward biases, boosting production,

and eventually improving resource allocation. Welfare increases if this production boost

outweighs reduced total output caused by market power concentration. In contrast, when

managers overestimate market prospects, reduced competition similarly improves informa-

tion quality but corrects upward biases. This leads to reduced production and amplifies

allocative efficiency losses, thus intensifying the negative welfare impact of market concen-

tration.

Note that the negative link between competition and welfare depends on the relative

gap in information production, rather than the absolute intensity, as competition intensifies.

For example, when the information acquisition cost is high or low, information production

either ceases or is in full scale, leading to a minimal change in information production when

competition intensifies. Therefore, the market concentration channel dominates and thus

competition always improves total welfare. In contrast, for an intermediate level of informa-

tion cost, welfare-reducing competition always arises in the sense that any market structure

with the total number of competing firms exceeding an exogenous threshold becomes sub-

optimal due to welfare loss related to deteriorated managerial learning alone.

We identify product profitability and market uncertainty as two key determinants of

the relative strength of the aforementioned competing forces. Both factors can contribute

to the direct effect of product market competition, although the positive effect of market

uncertainty is more nuanced. With fixed information production for each stock, an increase in

the number of stocks reduces the probability that all order flows are uninformative. However,

intensified competition decreases information production, which indirectly leads to a large

loss of welfare when amplified by the uncertainty of market prospects. Thus, one would

expect the indirect effect to be dominant with low product profitability and high market
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uncertainty.

We extend the discussion in several important directions. First, we consider horizontal

mergers by comparing the total welfare of a monopoly with that of a duopoly. Interestingly,

a monopoly can dominate a duopoly in total welfare for an intermediate level of information

production cost. When information production is too cheap or too costly, there is a small

gap in the amount of information produced, and thus a monopoly is unlikely to be dominant.

Second, we consider cross-asset trading in which some traders with large investment

opportunities (L-traders, including hedge funds, as introduced in Goldstein et al., 2014)

can trade all stocks and the rest (S-traders such as individuals and some mutual funds)

with small investment opportunities can only trade one stock. With cross-asset trading, the

expected trading profits of L-traders, as competition intensifies, will first increase and then

decrease, exhibiting an inverted U-shape pattern. Thus, the incentive for L-traders to acquire

information will reach its maximum for a moderate level of competition. This differs sharply

from S-traders, for whom the incentive of information production is always maximized in a

monopoly. However, a negative relationship between competition and total welfare can still

arise with L-traders, since the incentive of information production for L-traders will drop

quickly after achieving its maximum level.

Third, we consider cross-asset learning in which market makers can observe the order

flows of all stocks, rather than a single stock. This gives market makers more information

advantages, reducing trading profits for both the S-traders and the L-traders. Actually,

this makes S-traders more prone to competition compared to L-traders. Meanwhile, S-

traders have a weaker incentive to acquire information compared to L-traders, implying

that L-traders may “crowd out” S-traders due to cross-asset trading opportunities/abilities.

Interestingly, we find that a negative relationship between product competition and total

welfare can arise when S-traders are not fully crowded out by L-traders, which is more likely

to occur if the cost of information production is relatively small.

Cochrane (2011) argues that discount rates mainly drive stock price movements instead of

cash flows. We therefore also consider discount rates, and follow Dou et al. (2021) to assume

that discount rates rise with competition. This further discourages speculators from acquir-

ing information, exacerbating the negative effects of competition on information production

and welfare.

Finally, we examine the impact of dynamic trading. Multiple trading rounds introduces

market manipulation opportunities, especially on small firms (Edmans et al., 2015; Gold-

3



stein and Guembel, 2008; Banz, 1981; Acharya and Pedersen, 2005; Comerton-Forde and

Putniņš, 2014). As competition reduces firm size, manipulation likelihood increases, further

suppressing price informativeness and amplifying competition’s negative welfare impact.

Our results have immediate implications for antitrust regulations in practice, where effi-

ciency and welfare are the primary considerations. For example, regulators worry that M&A

deals may substantially reduce competition and thus welfare costs by giving firms exces-

sive market power to exploit other market participants and consumers (Guesnerie and Hart,

1985; Farrell and Shapiro, 1990; Landes and Posner, 1997). Horizontal mergers between

direct competitors is particularly concerning. However, due consideration of the interaction

between (financial) market efficiency and real efficiency is missing from existing antitrust

rules.1 The informational feedback from stock prices to real decisions generates a counter-

intuitive implication: reduced competition can improve social welfare when the feedback

effect from the financial market is sufficiently large. Using data from the U.S. market, we

illustrate the importance of incorporating feedback effects in assessing the welfare impacts

implications of mergers. Overall, these results highlight that feedback effects from the stock

market are a critical factor in analyzing the welfare impact of horizontal mergers and the

efficiency of market competition. To avoid misinterpreting merger and acquisition outcomes,

antitrust regulatory bodies should take into account the interaction between the financial

market and the real economy.

Literature. Our study adds to the literature on the feedback effects of financial markets

on real efficiency. Early studies include Fishman and Hagerty (1989), Leland (1992), Dow

and Gorton (1997), and Subrahmanyam and Titman (1999). As reviewed by Bond et al.

(2012), and recently by Goldstein (2023), real decision makers (e.g., firm managers) can

collect new information from stock prices to improve investments and production decisions

(Foucault and Frésard, 2014; Edmans et al., 2015; Lin et al., 2019; Goldstein et al., 2013;

Edmans et al., 2017; Goldstein and Yang, 2019). Central to this strand of literature is

the alignment of market efficiency (i.e., the prediction power of stock prices for future cash

flows) and real efficiency (i.e., the usefulness of stock prices for investment and production

1Section 7 of the Clayton Act, amended by the Celler-Kefauver Act later, prohibits mergers and ac-
quisitions when the effect “may be substantially to lessen competition or to tend to create a monopoly.”
Consequently, the US Department of Justice (DOJ) and the Federal Trade Commission (FTC) have de-
veloped the Horizontal Merger Guidelines, delineating key factors and analytical frameworks, as well
as many specific examples of how these principles can be applied in actual merger reviews. See, e.g.,
https://www.justice.gov/atr/horizontal-merger-guidelines-0.
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decisions). These two notions of efficiency typically diverge under feedback effects (Dow

and Gorton, 1997; Bond et al., 2012). Bai et al. (2016) derive a welfare-based measure

of price informativeness and find a revelatory component has contributed significantly to

the efficiency of capital allocation since 1960. Goldstein and Yang (2019) reveal a stark

difference between market efficiency and real efficiency by considering multiple dimensions

of information, generating interesting insights for optimal design of disclosure systems.2

Our paper differs by focusing on the welfare implications of intensified competition on real

efficiency. In our model, product market competition can increase real efficiency by reducing

firms’ market power and decrease real efficiency by reducing information production by

speculators. The two competing forces of reducing market power concentration and reducing

information production jointly determine the impact of product market competition on social

welfare.

A closely related study is Xiong and Yang (2021), which emphasizes the strategic in-

formation disclosure of firms. Our paper differs from theirs in the following three aspects,

including: First, in their model, competition reduces firms’ voluntary disclosure, ultimately

leading to a decrease in economic efficiency. In contrast, we stress the role of information

production by speculators and show that this mechanism alone can generate a negative re-

lationship between competition and total welfare. Second, their analysis mainly compares

a monopoly product market with a perfect competition market, whereas we consider any

arbitrary number of firms and characterize general conditions under which competition de-

creases total welfare. Third, speculators no longer exogenously possess private information,

but instead endogenously choose whether to become informed in our model.3 Huang and Xu

(2023) also explore the secondary market and product market competition, but focus on how

initial stock holdings affect arbitrageurs’ buying and thus entry decisions of potential unin-

formed entrants through feedback effects. More broadly, our paper relates to the aggregate

implications of information production (e.g., Han and Yang, 2013). In particular, Angeletos

et al. (2023) show that the two-way feedback between startup activity and investors beliefs

can generate excessive and non-fundamental influences on firm activities and asset prices.

2More literature focusing on optimal disclosures include: Chen et al. (2021); Edmans et al. (2015);
Boleslavsky et al. (2017); Gao and Liang (2013) and Jayaraman and Wu (2019).

3More precisely, Xiong and Yang (2021) also consider endogenous information acquisition by speculators
in their Section 5.3. A key difference is that when the number of firms increases, information acquisition
decreases in the extensive margin in our paper, while Xiong and Yang (2021) document a different pattern in
which the extensive margin of information acquisition increases while the intensive margin decreases. This
further suggests that this insight is robust to different ways of modeling information acquisition.
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Our study is also related to the long-standing literature investigating the relationship

between competition and economic efficiency and its implications for antitrust regulations.

Dating back to Smith (1776) and Cournot (1838), the traditional wisdom — the existence of

market power can generate market inefficiencies and reduce welfare by raising price and sup-

pressing output — has greatly influenced the evolution of the Horizontal Merger Guidelines

(Nocke and Whinston, 2022).4 On the one hand, the unilateral effect analysis emphasizes the

trade-off between post-merger market power and potential synergies (see, e.g., Williamson,

1968; Farrell and Shapiro, 1990; Nocke and Whinston, 2022).5 On the other hand, the coor-

dinated effect analysis concerns implicit anti-competitive coordination from mergers in the

absence of explicit communication (see, e.g., Compte et al., 2002; Miller and Weinberg,

2017; Porter, 2020). Röller et al. (2001) and Asker and Nocke (2021) offer comprehensive

surveys of this vast literature before 2001 and more recent developments, respectively. In

addition, Peress (2010) analyzes how product market competition influences stock price in-

formativeness, which in turn affects capital allocation.

We examine not only the potential negative impact of firm competition on price informa-

tiveness but also the informational feedback from stock prices to production decisions, with

novel welfare and policy implications. In particular, we show that without cost synergies

that are commonly assumed in prior studies, informational feedback from stock market alone

can affect and even reverse the welfare effects of a horizontal merger. Thus, our analysis

reveals the feedback effect to be an important and indispensable factor in analyzing the

welfare impact of horizontal mergers and the efficiency of market competition.

Finally, several recent studies explore direct evidence for merger-specific efficiency (Ashen-

felter et al., 2015; Braguinsky et al., 2015), and characterize what counts as an efficiency

(Hemphill and Rose, 2017; Geurts and Van Biesebroeck, 2019). Covarrubias et al. (2020)

identify good and bad concentrations at the aggregate and industry level in the United

States over the past three decades. Our paper contributes to the discussion of positive

merger-specific efficiencies by exploring a new channel through feedback effects between the

product market and the financial market. Two other related papers, Edmans et al. (2012)

and Luo (2005), similarly explore the feedback effect in mergers and acquisitions. Both em-

4The Horizontal Merger Guidelines feature two key considerations: unilateral price effects and coordinated
effects. Other concerns include pro-competitive forces such as market entry and dynamic considerations (see,
e.g., Mermelstein et al., 2020; Nocke and Whinston, 2010).

5Recently, a growing literature evaluates“merger simulations” to quantify unilateral price effects and
welfare impacts (Werden and Froeb, 1994; Weinberg, 2011; Björnerstedt and Verboven, 2016; Nevo, 2000).
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phasize how learning by insiders from outsiders’ information affects the decision for M&As

but do not focus on the link between competition and efficiency as we do.

The remainder of the paper is organized as follows: Section 2 sets up the model. Section

3 characterizes the equilibrium. Section 4 revisits the relationship between production com-

petition and real efficiency in the presence of feedback effects. Section 5 extends the baseline

model and discusses the robustness of the main results. Finally, Section 6 concludes. All

proofs are relegated to the appendix.

2 Model Setup

We embed feedback from stock prices to product decisions under market competition

into an otherwise standard Cournot model. Consider n ≥ 2 identical firms competing in

production quantity, and each firm’s equity is traded on a public stock exchange. Time is

discrete and indexed by t ∈ {0, 1}. At t = 0, a group of speculators decide whether to

acquire private information on the market prospects of the product and subsequently decide

how to trade stocks.6 Then, the manager of each firm makes a production decision, taking

into account the production strategies of other firms and the trading on the stock exchange

at t = 0. Finally, at t = 1, the cash flows for all firms are realized. The key departure from

the Cournot model is that managers in our setting can learn and use information contained

in stock prices for their production decisions.

The product market. Let qi denote the output level of the ith firm, where i ∈ {1, . . . , n}.7

Denote the total supply of the product by Q =
∑n

i=1 qi = qi+q−i, where −i denotes all other

firms. As in Xiong and Yang (2021), the market clearing price P is given by: P = A− bQ.

Here, b > 0 indicates the sensitivity of demand to price and A > 0 captures the possible

market prospect of the product. Depending on a relevant economic state ω ∈ {H,L}, the
6We follow the literature by assuming that speculators only acquire information once (See, e.g., Gao and

Liang, 2013; Goldstein et al., 2014; Dow et al., 2017; Xiong and Yang, 2021). The effects of introducing
multiple rounds of trading will be discussed in Section 5.

7We focus on Cournot competition (i.e., quantity competition), rather than Bertrand price competition,
for the following two reasons. First, in canonical Bertrand competition, the total welfare is independent of the
total number of competing firms. Second, as shown in Kreps and Scheinkman (1983), the quantity (capacity)
pre-commitment and the Bertrand price competition yield Cournot outcomes. In addition, we anticipate that
Bertrand competition can weaken our result even with differentiated products. For example, Vives (1985)
shows that prices and profits are generally higher and quantities are lower in Cournot competition than
in Bertrand competition. Therefore, Bertrand competition can enhance the effect of market concentration,
potentially reducing the relative significance of information feedback.
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realization of the market prospect is given by A(ω) = Aω, where AH > AL > 0. Both

states are equally likely ex ante, i.e., Pr(ω = H) = Pr(ω = L) = 1/2. Given the production

decisions {qi}1≤i≤n, the ith firm receives an operating profit given by:

TPi (qi) = qi (A− bQ−MC) , (1)

where MC is a constant marginal production cost. Without loss of generality, we assume

that AH > AL ≥ MC. To highlight the core mechanism, we leave out financing constraints.

All firms decide simultaneously on the production level qi at time t = 0. Each firm

manager maximizes the expected value of the firm after the stock prices are observed. In

other words, conditional on the information observed, Fm, at t = 0, the firm manager chooses

the output level qi to maximize:

Vi (qi) = E[TPi (qi) | Fm]. (2)

The stock market. All firms are publicly traded by three types of investors: (i) a contin-

uum of risk-neutral speculators who can choose to acquire costly information; (ii) a group

of liquidity traders for each firm i ∈ {1, · · · , n}, who jointly submit an aggregate order

zi ∼ U([−1, 1]), independently and uniformly distributed over [−1, 1] across the identity of

the firm i; and (iii) a set of risk neutral market makers. The free entry of market makers

implies that each makes zero profit in equilibrium.

For each firm i, let αi ∈ [0, 1] denote the size of speculators acquiring costly information

at t = 0 as in Foucault and Frésard (2014). To endogenously determine the amount αi of

informed speculators, we assume that each speculator k must pay a cost c > 0 to become

informed, i.e., receiving an informative signal mi
k ∈ {H,L}.8 With precision θ > 1

2
, the

signal structure is given by:

Pr
(
mi

k = H|ω = H
)
= Pr

(
mi

k = L|ω = L
)
= θ. (3)

Conditional on the realization of ω, mi
k is independently and identically distributed across

speculators (as in Goldstein et al., 2013; Dow et al., 2017). Upon observing the signal mi
k,

the kth informed speculator can choose to trade xi
k shares of the ith firm, where xi

k ∈ [−1, 1]

as in Dow et al. (2017). Thus, the aggregate demand for the ith stock from speculators is

8The superscript “i” in mi
k is used to indicate that the kth speculator is trading the ith stock.
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given by: xi =
∫ αi

0
xi
kdk. Recall that all liquidity traders submit an aggregate order zi that

is uniformly distributed. The total order flow fi for the ith stock is: fi = zi + xi.

As in Kyle (1985), the order flow fi in each stock i is absorbed by market makers, and

the stock price si reflects the expected value of the firm conditional on the total order flow:

si (fi) = E [Vi | fi] . (4)

Equilibrium definition. The equilibrium concept that we use is perfect Bayesian equi-

librium, which consists of: (i) a production strategy for each manager that maximizes the

expected firm value given the information conveyed in stock prices; (ii) an information pro-

duction strategy and a trading strategy for speculators that maximize the expected trading

profit given all others’ strategies; (iii) a price-setting strategy for market makers that allows

them to break even in expectation given all others’ strategies; (iv) managers and market

makers update their beliefs about the economic state according to the Bayes rule; and (v)

each player’s belief about other players’ strategies is correct in equilibrium.

3 Equilibrium Characterization

We solve the model backward. We first derive the equilibrium strategy of firms, taking

as a given the amount αi of informed speculators for each firm i, and then we endogenize αi.

As shown later, an informed speculator k with a private signal mi
k always buys one share

of the stock of the ith firm when mi
k = H, and sells one share when mi

k = L. Given this

observation, we can now investigate the production strategies of firms and the pricing rules

for stocks in equilibrium.

Let us first consider the limit where the information acquisition cost c is sufficiently

high that all speculators abstain from acquiring information. When this occurs, the stock

price is uninformative and the market outcome reduces to the standard Cournot competition

outcome with n identical firms. Therefore, each firm produces an identical output:

qM =
Ā−MC

(n+ 1)b
, (5)

where Ā = 1
2
(AH + AL).

This can be compared with the market outcome when the actual market prospect A(ω)

9



is publicly known to all market participants. Specifically, when A(ω) = AH , each firm

produces a quantity of qH = AH−MC
(n+1)b

, making a profit of sH = (AH−MC)2

(n+1)2b
. Similarly, when

A(ω) = AL, each firm produces qL = AL−MC
(n+1)b

, making a profit of sL = (AL−MC)2

(n+1)2b
. In contrast,

in the absence of information produced by speculators, the equilibrium output qM under

uncertainty is just the expectation of outputs in both states, i.e., qM = 1
2
(qH + qL).

Next, we consider the case of informative stock trading. Intuitively, due to information-

based speculative trading, stock prices contain useful information for managers to guide

production decisions. Thus, to solve for the production strategy with informational feedback

effects, we need to analyze stock pricing rules in equilibrium. Following Kyle (1985), market

makers set stock prices based on the updated belief about the value of firms, given the total

order flow observed. Given the information structure in Equation (3), by the law of large

numbers (Dow et al., 2017), the aggregate order of informed speculators is xi = αi(2θ − 1)

when ω = H, generating a total order flow of fi = αi(2θ− 1) + zi. Similarly, if ω = L, then:

fi = −αi(2θ − 1) + zi.

In summary, market makers condition the pricing on the observed total order flow, which

aggregates the information from the trading activities of informed speculators. Therefore,

the stock price contains valuable information for managers, which establishes an information

feedback channel to the real economy. As shown in Lemma 1, the optimal production

strategies of firms explicitly depend on stock prices.

Lemma 1. Given the measures of informed speculators {αi}1≤i≤n, the equilibrium stock price

for the ith firm is given by:

si (fi) =


sH , if fi > γi

siM , if −γi ≤ fi ≤ γi

sL, if fi < −γi

, (6)

where sH = (AH−MC)2

(n+1)2b
, siM = 1

4(n+1)2b

{
2
(
(AH −MC)2 + (AL −MC)2

)
− βi (AH − AL)

2},
sL = (AL−MC)2

(n+1)2b
, γi = 1− αi(2θ − 1), and βi =

∏
j ̸=i γj.

Furthermore, given all stock prices {si}1≤i≤n, the ith firm produces an output of:

q∗i =


qH , if sj = sH for some j

qM , if sj = sjM for all j

qL, if sj = sL for some j

, (7)
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where qH = AH−MC
(n+1)b

, qL = AL−MC
(n+1)b

, and qM is given by Equation (5).

We make three comments on Lemma 1. First, the three conditions in Equation (6),

as well as those in Equation (7), are mutually exclusive, which rules out the possibility of

observing both si = sH and sj = sL for some i ̸= j.9 Thus, the optimal production strategy

q∗i is well defined. Second, we can directly verify that sH > siM > sL, which implies that the

equilibrium stock price si increases weakly in the total order flow fi. This result is consistent

with those of the existing literature on feedback effects (Foucault and Frésard, 2014; Dow

et al., 2017; Lin et al., 2019). Third, managers choose equilibrium output levels based on

observed stock prices. Obviously, qH > qM > qL, which implies that q∗i generally tends to

increase with stock prices.

We now proceed to analyze the optimal behavior of speculators in equilibrium. Specifi-

cally, we first derive the optimal trading strategy of an informed speculator and then calculate

the resulting expected trading profits, which are summarized in Lemma 2 below.

Lemma 2. For speculators that focus on the ith stock, the optimal trading strategy is to long

one share (that is, xi
k = +1) when mi

k = H and short one share (that is, xi
k = −1) when

mi
k = L. The resulting expected trading profit is:

Πi(α) =
γi(2θ − 1) (2 + (n− 1)βi)

2(n+ 1)2b

(
Ā−MC

)
(AH − AL) .

Lemma 2 verifies the intuition that an informed speculator always follows his own signal,

i.e., he longs the stock after receiving good news and shorts it after bad news. Also note

that Πi(α) depends on all {αi}1≤i≤n through γi and βi. Furthermore, the expected trading

profit Πi(α) strictly increases both in the average profitability, as measured by
(
Ā−MC

)
,

and in the uncertainty about the market prospects, as measured by (AH − AL).

Finally, Lemma 2 is an important intermediate step in understanding the incentive for

information production. Specifically, when acquiring costly information on market prospects,

an uninformed speculator balances between the cost of information production c > 0 and

the value of proprietary information Πi(α). Since all firms are identical in the Cournot

competition, we hereafter focus on the symmetric case αi = α (∀ 1 ≤ i ≤ n) and define:

Π(α) := Πi(α) =
γ(2θ − 1) (2 + (n− 1)γn−1)

2(n+ 1)2b

(
Ā−MC

)
(AH − AL) , (8)

9To see this, given that si = sH , the state consistent with the order flow of noise trading can only admit
ω = H, contradicting sj = sL which fully reveals that ω = L.

11



where γ = 1− α(2θ − 1).

Note that Π(α) in Equation (8) strictly decreases in α, i.e., ∂Π(α)
∂α

< 0. Thus, the value of

private information decreases when more agents choose to do so, implying that information

acquisition is a strategic substitute among speculators.

Intuitively, when the cost of information acquisition is large enough such that Π(0) ≤ c,

no speculator has an incentive to acquire education. However, when the cost parameter is

sufficiently small such that c ≤ Π(1), all speculators choose to acquire information. Together,

these two conditions establish two cut-off points, including an upper bound c = Π(0) and a

lower bound c = Π(1). Specifically, we define:

cn =
(2θ − 1)

2(n+ 1)b

(
Ā−MC

)
(AH − AL) (9)

and

cn =
(2θ − 1)(1− θ) (2 + (n− 1)(2− 2θ)n−1)

(n+ 1)2b

(
Ā−MC

)
(AH − AL) (10)

Let α̂ denote the optimal intensity of information acquisition.

Proposition 1 (Information Acquisition Intensity).

(i) When c ≥ cn, there is a unique symmetric equilibrium with no information production

(α̂ = 0);

(ii) When 0 ≤ c ≤ cn, then α̂ = 1 in the unique equilibrium; and

(iii) When cn < c < cn, there is a unique interior equilibrium with α̂ ∈ (0, 1) such that

Π(α̂) = c.

Two comments are in order. When Π′(α̂) < 0, an interior solution α̂ is said to be

locally stable because when we start with α < α̂, more speculators find it optimal to acquire

information, increasing the intensity of information acquisition and vice versa. Moreover, the

incentive to acquire and trade on private information is negatively associated with the cost

of information production. Such an equilibrium on information acquisition is reminiscent

of that in Grossman and Stiglitz (1980). A sufficiently large cost preempts the incentive

to acquire information, and thus the informational feedback effect disappears. In general,

the information content of stock prices depends on the amount of informed speculators in

the stock market, which is pinned down uniquely by the information cost and other model

parameters.
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4 Competition and Efficiency Under Feedback Effects

We now establish that product market competition can decrease the incentive for specula-

tors to produce information and then analyze the efficiency implications of firm competition

with informational feedback from stock prices. Interestingly, reduced competition in the

stock market can enhance informational efficiency, leading to allocative efficiency gains that

significantly alter the efficiency implications of product market competition. When the feed-

back effect is sufficiently strong, Cournot competition may even produce negative welfare

effects.

4.1 Information Production

We first analyze how information production, measured by the equilibrium size of in-

formed speculators α̂n := α̂(n), varies with the number of firms n in the product market.

For simplicity, we focus on the interior solution case; otherwise, we expect that ∂α̂n/∂n = 0

under corner solutions. Then, we rewrite the equilibrium condition as:

Π(α̂) = Π(n, α̂n) = c (11)

A direct application of the implicit function theorem implies the following:

Proposition 2 (Competition and Information Production). When an interior solution α̂n ∈

(0, 1) exists c ∈ (c, c), α̂n strictly decreases in n, that is, ∂α̂n

∂n
< 0.

Proposition 2 verifies that the amount α̂n of informed speculators increases as competition

weakens driven by stronger incentives to acquire information. This result is consistent with

empirical evidence in Farboodi et al. (2022) in which investors have relatively more data on

large firms than on small ones because the incentive for speculators to produce information

increases with reduced competition, which raises both firm profitability and size.

Furthermore, it is also worth examining how information production is affected by changes

in other model parameters related to the product market, including the unit production cost

MC, the price sensitivity of demand b and market prospect parameters AH and AL. Again,

we can apply the implicit function theorem to the equilibrium condition (11) to derive:

Corollary 1. When c ∈ (cn, cn) so that an interior solution α̂n ∈ (0, 1) exists, the equilibrium

features ∂α̂n

∂MC
< 0, ∂α̂n

∂b
< 0, ∂α̂n

∂AH
> 0, and ∂α̂n

∂AL
< 0.
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Information production, measured by the amount α̂n of informed speculators, decreases

with the production cost MC. This result can be understood by analyzing the expected

trading profit Π(α), which is lower for a higher MC. Obviously, a lower expected trading

profit will reduce the incentive for speculators to produce information, decreasing the equi-

librium amount of information production. Similarly, when demand becomes relatively more

sensitive to price (i.e., b ↑), the amount α̂n of informed speculators will also decrease, since

the expected trading profit Π is lower for a higher b. Furthermore, α̂n increases in AH and

decreases in AL. To understand these, note that the expected trading profit Π increases

in the market uncertainty that is proportional to (AH − AL)
2. Therefore, a larger gap of

(AH − AL) increases the expected trading profit of informed speculators, inducing them to

acquire more information.

4.2 Feedback Effects and Allocative Efficiency

The previous section shows that reduced competition in the product market enhances

the information efficiency of the stock market. We now examine how this improvement in

price informativeness affects allocative efficiency in the real economy. The central idea is

that, through the feedback effect, managers’ ability to learn from stock prices helps correct

potential underestimation or overestimation of the market prospect A(ω), improving their

production decisions and thereby increasing real efficiency via more effective information

production.

We begin by introducing the probability of misallocation, which stems from managerial

underestimation or overestimation of the market prospect. From Lemma 1,

Pr(∀i : q∗i = qM | ω = H) = (γ̂n)
n and Pr(∀i : q∗i = qH | ω = H) = 1− (γ̂n)

n

Thus, with probability 1 − (γ̂n)
n, the true state {ω = H} is revealed through stock prices,

allowing managers to correctly estimate the market prospect AH . As a result, both the

aggregate output and the price to align with those in Cournot competition under complete

information; that is, QH(n) =
n(AH−MC)

b(n+1)
and PH(n) =

AH+nMC
(n+1)

. However, with complemen-

tary probability (γ̂n)
n, stock prices remain uninformative, leading managers to underestimate

the market prospect. This results in an inefficiently lower output QM(n) = n(Ā−MC)
b(n+1)

< QH

and a higher price PMH(n) = PH(n) +
n(AH−AL)

2(n+1)
> PH(n). Thus, (γ̂n)

n represents the prob-

ability of misallocation when the true state is ω = H. Similarly, misallocation occurs with
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probability (γ̂n)
n when the true state is ω = L, where managers may overestimate the market

prospect.

Next, we measure total welfare, W (n;ω), which includes both firm profits, Γω(n) =

E [
∑n

i=1 TPi | ω] and consumer surplus, CSω(n) =
1
2
(A(ω)−P )Q. Formally, total welfare is

given by:

W (n;ω) =
1

2
(A(ω)− P )Q+E

[
n∑

i=1

TPi | ω

]
, (12)

Since A(ω) is random, the expected total welfare and consumer welfare are given by W =

Eω[W (n;ω)] and CS = Eω[CSω(n)], respectively.

Allocative efficiency gains. We now analyze how gains (or losses) in allocative efficiency

arise through feedback effects. Figure 1 illustrates the source of these efficiency changes by

comparing the total welfare between n firms and (n− 1) firms when the true state is ω = H.

Specifically, in the case of n firms, with probability 1−(γ̂n)
n, managers correctly estimate the

market prospect AH , resulting in an output of QH(n) and corresponding welfare represented

by the area Area(ABNM). Conversely, with complementary probability (γ̂n)
n, the output

QM(n) is lower due to managerial underestimation of the market prospect, and the welfare

is represented by the area Area(ABFE). By weighting these two areas by the probabilities

of (γ̂n)
n and 1 − (γ̂n)

n, we obtain the expected total welfare WH(n) given ω = H, which

corresponds to the blue trapezoid area, Area(ABHG).

In contrast, when there are (n − 1) firms, with probability 1 − (γ̂n−1)
n−1, the output is

QH(n − 1), and the corresponding welfare is represented by the area Area(ABLK); with

complementary probability (γ̂n−1)
n−1, managers underestimate the market prospect and the

output is QM(n− 1), resulting in a lower welfare represented by the area Area(ABDC). By

weighting these two areas by the probabilities (γ̂n−1)
n−1 and 1 − (γ̂n−1)

n−1, we obtain the

expected total welfare WH(n − 1) given ω = H, which corresponds to the blue trapezoid

area Area(ABJI).

The welfare gain due to reduced competition is then given by WH(n− 1;ω)−WH(n;ω),

which is positive only when Area(ABJI) > Area(ABHG) holds. Indeed, this condition

holds when the price impact from reduced competition is negative. To assess the price

impact, note that PH(n) = (γ̂n)
n × PHM + (1− (γ̂n)

n)× PH and PH(n− 1) = (γ̂n−1)
n−1 ×

PHM(n− 1) + (1− (γ̂n−1)
n−1)×PH(n− 1). Thus, the price effect from reduced competition
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QH(n)

P = AH − b ∗Q

P = AL − b ∗Q

P = MC

QM (n)
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QH(n − 1)QM (n − 1)
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Figure 1: Allocative Efficiency Gain (ω = H)

Notes: When there are n firms, with probability 1−(γ̂n)
n, the output isQH(n) and the correspond-

ing welfare is Area(ABNM); with complementary probability (γ̂n)
n, the output is QM (n) and

the welfare is Area(ABFE). The expected welfare WH(n) then is the average of Area(ABFE)
and Area(ABNM) weighted by (γ̂n)

n and 1−(γ̂n)
n, respectively. Similar discussion applies when

there are (n− 1) firms, and the expected welfare WH(n− 1) is the average of Area(ABLK) and
Area(ABDC) weighted by (γ̂n−1)

n−1 and 1− (γ̂n−1)
n−1, respectively. If (γ̂n−1)

n−1 is sufficiently
small (compared with (γ̂n)

n) such that condition (13) holds, an allocative efficiency gain will arise,
i.e.,WH(n) = Area(ABHG) < WH(n− 1) = Area(ABJI).
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QH(n)

P = AH − b ∗Q

P = AL − b ∗Q

P = MC
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Figure 2: Allocative Efficiency Loss (ω = H)

Notes: When there are n firms, with probability 1−(γ̂n)
n, the output isQH(n) and the correspond-

ing welfare is Area(ABNM); with complementary probability (γ̂n)
n, the output is QM (n) and

the welfare is Area(ABFE). The expected welfare WH(n) then is the average of Area(ABFE)
and Area(ABNM) weighted by (γ̂n)

n and 1 − (γ̂n)
n, respectively. Similar discussion applies

when there are (n− 1) firms, and the expected welfare WH(n− 1) is the average of Area(ABLK)
and Area(ABDC) weighted by (γ̂n−1)

n−1 and 1 − (γ̂n−1)
n−1, respectively. If (γ̂n−1)

n−1 is not
sufficiently small (compared with (γ̂n)

n) such that condition (13) does not hold, an allocative
efficiency loss will arise, i.e., WH(n) = Area(ABHG) > WH(n− 1) = Area(ABJI).

in the state ω = H is:

∆PH(n) = PH(n− 1)− PH(n) =
AH −MC

n(n+ 1)
+

AH − AL

2n(n+ 1)

[(
n2 − 1

)
(γ̂n−1)

n−1 − n2 (γ̂n)
n]

Interestingly, reduced competition can lead to a negative price impact (i.e., ∆PH(n) < 0)

when the reduction in misallocation probability is sufficiently significant, such that:

(γ̂n−1)
n−1 <

n2

(n2 − 1)
(γ̂n)

n − 2 (AH −MC)

(n2 − 1) (AH − AL)
. (13)

Intuitively, this inequality holds if reduced competition significantly improves information

production and lowers the value of (γ̂n−1)
n−1. This enables managers to better correct their

underestimation of the market prospect AH and reduce misallocation. This scenario corre-

sponds to the allocative efficiency gain depicted in Figure 1. In contrast, Figure 2 illustrates

allocative efficiency losses under weak feedback effects when equation (13) is violated.
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Two clarifications are necessary regarding allocative efficiency gains (or losses). First,

allocative efficiency gains cannot occur in the state ω = L, as managers overestimate the

market prospect AL. Reduced competition (n ↓) decreases both QL(n) =
n(AL−MC)

b(n+1)
(when

the state is revealed) and QM(n) = n(Ā−MC)
b(n+1)

(when prices are uninformative). Furthermore,

improved price informativeness under reduced competition corrects managers’ upward biases,

causing them to further reduce output and thus increase prices. Hence, reduced competition

always results in higher prices in the low state. Second, the high state (ω = H) has a greater

impact on total welfare due to its larger market size. Since allocative efficiency gains from

feedback effects arise mainly in the high state, these gains dominate welfare outcomes only

when market uncertainty is sufficiently large, making welfare in the low state relatively less

important.

4.3 Competition and Real Efficiency

We now formally analyze the efficiency implications of product market competition with

feedback effects. Traditional wisdom claims that standard Cournot competition always im-

proves economic efficiency and that imperfect/insufficient competition, such as oligopolies

and monopolies, often leads to dead weight loss (Willner, 1989). However, existing studies

on Cournot competition ignore the feedback effects of the financial market. Proposition 2

explains why the traditional argument may fail: product market competition lowers spec-

ulators’ incentives to acquire information, leading to inefficient production decisions. The

previous section also shows how feedback effects can create allocative efficiency gains, po-

tentially reversing the link between product competition and welfare.

Specifically, the expected total welfare in the presence of feedback effects is given by:

W (α̂n, n) =
n(n+ 2)

8b(n+ 1)2

(
4
(
Ā−MC

)2
+ (1− γ̂n

n) (AH − AL)
2
)
, (14)

where γ̂n = 1− α̂n(2θ − 1). Correspondingly, consumer welfare is given by:

CS (α̂n, n) =
n2

8b(n+ 1)2

(
4
(
Ā−MC

)2
+ (1− γ̂n

n) (AH − AL)
2
)
. (15)

Note that both W (α̂n, n) and CS (α̂n, n) strictly increase with average profitability

(A − MC) and market uncertainty (AH − AL). Notably, W (α̂n, n) becomes more sensi-

tive to (AH − AL) as the number of informed speculators increases (i.e., α̂n ↑), reducing the
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probability of misallocation (γ̂n)
n. This effect arises only due to informational feedback.

Next, we examine the relationship between total welfare and firm competition in the

presence of feedback effects and investigate whether total welfareW (α̂n, n) can be negatively

associated with the competition parameter n. To this end, we compute the total derivative

of total welfare W (α̂n, n) with respect to n, the number of firms, as follows:

dW (α̂n, n)

dn
=

∂W (α̂n, n)

∂n︸ ︷︷ ︸
Competition Effects

+
∂W (α̂n, n)

∂α̂n

∂α̂n

∂n︸ ︷︷ ︸
Feedback Effects

. (16)

Equation (16) decomposes the total welfare effect into direct competition effects and

feedback effects. Obviously, one can verify that ∂W (α̂n,n)
∂n

> 0, which is consistent with the

conventional wisdom that product market competition tends to increase total welfare (see,

e.g., Willner, 1989). Meanwhile, since Proposition 2 establishes that ∂α̂n

∂n
< 0 (i.e., fierce

product competition discourages information production), it might be possible for dW (α̂n,n)
dn

to be negative when ∂W (α̂n,n)
∂α̂n

is positive and sufficiently large. Note that ∂W (α̂n,n)
∂α̂n

measures

the sensitivity of total welfare to the amount of information produced by speculators α̂n in

the stock market. Intuitively, as α̂n increases, a higher level of informativeness of the stock

market improves real efficiency in production, and thus a positive value of ∂W (α̂n,n)
∂α̂n

follows.10

Lemma 3 (Competition and Real Efficiency).

Define G1(AH , AL,MC) = 2 + 8
(
Ā−MC

)2/
(AH − AL)

2, γ = 1− α(2θ − 1) and

g1(α, n) = 2γn +
n(n+ 2)γn

2 + n(n− 1)γn−1

(
4n+ n(n− 3)γn−1 − 2(n+ 1) ln

1

γ

)
g2(α, n) = 2γn +

nγn

2 + n(n− 1)γn−1

(
4n+ n(n− 3)γn−1 − 2(n+ 1) ln

1

γ

)

Then: (i) when g1 (α̂n, n) > G1(AH , AL,MC) holds, dW (α̂n,n)
dn

< 0, that is, product market

competition decreases total welfare; and

(ii) when g2 (α̂n, n) > G1(AH , AL,MC) holds, dCS(α̂n,n)
dn

< 0, that is, product market

competition decreases consumer welfare.

Lemma 3 characterizes when competition decreases real efficiency. First, note that the

condition in Lemma 3 is non-empty. For example, this occurs when the price sensitivity b of

demand is sufficiently high such that the probability of misallocation is large.11

10Using Equation (14), we can directly compute: ∂W (α̂n,n)
∂α̂n

= n2(n+2)(2θ−1)γ̂n
n−1

8b(n+1)2 (AH −AL)
2
> 0.

11Note that limb→∞ α̂n = 0. Then, we get the approximation g1 (α̂n, n) = n2(n+1)(n+2)
n(n−1)+2 + 2 + O (nα̂n),
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Second, Lemma 3 examines the role of market uncertainty (AH −AL) and average prof-

itability (Ā−MC) in shaping the efficiency effects of product market competition through

feedback. Specifically, G1(AH , AL,MC) increases with average profitability and decreases

with market uncertainty. Thus, when market uncertainty is high and average profitability

low, the condition in Lemma 4.2(i) is more likely to hold, leading to a negative welfare effect

from product market competition.

Third, the potential negative welfare effect depends on the probability of misallocation

(γ̂n)
n through g1(α̂n, n). When the probability of misallocation is maximized (γ̂n = 1), we

estimate g1 = 2 + n2(n+1)(n+2)
2+n(n−1)

. As γ̂n approaches zero, g1 tends to zero. Thus, g1 increases

with the probability of misallocation or decreases with information production, although it

is not strictly monotonic in either variable. This suggests that the negative welfare effect of

competition (g1(α̂n, n) > G1(AH , AL,MC)) is more likely when the probability of misalloca-

tion is not too low, allowing feedback effects to generate enough gains in allocative efficiency

when competition decreases. However, Section 4.2 points out that feedback effects may in-

stead cause a loss in allocative efficiency. Such losses would reduce total welfare, consistent

with the nonmonotonicity of g1(α̂n, n).

Since Lemma 3 involves the endogenous variable of information acquisition, we now

provide a more direct result through constructive derivations.

Proposition 3 (Welfare-destructive Overcompetition).

Consider a pair of positive integers (m,n) satisfying Φ(m) ≥ 1 and n > N(m), where12

Φ(m) =

(
1 +

(AH − AL)
2(1− (2− 2θ)m)

4(A−MC)2

)
× m(m+ 2)

(m+ 1)2

N(m) =
(m+ 1)2

(2− 2θ) (2 + (m− 1)(2− 2θ)m−1)
≥ m+ 1

Then: W (α̂m,m) > W (α̂n, n) holds for any c ∈ [c̄n, cm) with c̄n < cm.

Denote m0 := inf{m ∈ N : Φ(m) ≥ 1} < ∞. Proposition 3 shows that when the number

of firms exceeds N(m0), the total welfare is strictly less than with m0 firms.

Theorem 1 below directly follows from Proposition 3.

where O(·) means “big O”. Now suppose that g(0, n) > G1, or equivalently,
(Ā−MC)2

(AH−AL)2 < n2(n+1)(n+2)
8(n(n−1)+2) . By

continuity, for any α̂n > 0 sufficiently small, g1 (α̂n, n) > G1(AH , AL,MC) holds.
12Note that Φ(m) ≥ 1 is non-empty because limm→∞ Φ(m) = 1 + (AH−AL)2

4(A−MC)2
> 1. Furthermore, since

Φ(m) strictly increases in m, Φ(m1) > Φ(m2) if m1 > m2.
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Theorem 1. Competition can reduce total welfare through informational feedback effects.

Theorem 1 underscores the welfare-reducing effect of competition through information

feedback. Specifically, when information production α̂ is fixed, Equation (14) shows that in-

creasing the number of firms always raises total welfare. Thus, Theorem 1 reveals that com-

petition reduces welfare solely through the information production channel. Furthermore,

for any positive integer m that satisfies Φ(m) ≥ 1, there exists a range of cost parameters c

for which excessive competition lowers the total welfare when n ≥ N(m).

Figure 3: Product Competition and Information Production

Our main insight is illustrated in Figures 3 and 4.13 First, Figure 3 shows how intensi-

fied competition affects information production incentives (Proposition 2). As competition

increases (n ↑), information production transitions from full information (α̂ = 1), to partial

information (0 < α̂ < 1), and ultimately to none (α̂ = 0). Second, Figure 4 illustrates

the non-monotonic welfare effects of competition, with total welfare maximized at n = 6.

Specifically: (i) for n small, the welfare increases as the market power declines; (ii) for n

intermediate, the welfare decreases as the feedback effect dominates; and (iii) for n large,

the welfare increases again as information production ceases, making the market power con-

centration channel dominant.

Interestingly, the interplay between Figure 3 and Figure 4 reveals two notable patterns

that warrant closer examination. First, the decline in information production precedes the

reduction in total welfare. Second, the observed non-monotonicity is primarily attributable

to an interior solution in information production, rather than corner solutions. In addition,

13Baseline parameters are θ = 0.75, b = 1.5, AH = 30, AL = 10, c = 1.5, and MC = 3, used throughout
unless stated otherwise. See online Appendix B.3 for analogous results using US market data.
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Figure 4: Product Competition and Total Welfare

Figure 5: Product Competition and Consumer Surplus

Figure 5 illustrates a similar non-monotonic pattern in consumer surplus when we vary the

number of firms n.14

Remark 1. Under extreme parameter values, where low market uncertainty reduces the

informational value of managerial learning, the stock market feedback effect may not overturn

the positive link between competition and total welfare. Nonetheless, it can significantly

shape the efficiency implications of firm competition, making it a crucial factor in regulating

horizontal mergers. See online Appendix B.1 for a detailed discussion.

14Specifically, in this numerical example, the consumer surplus increases first for n ≤ 14, then decreases
for 14 ≤ n ≤ 37, and finally increases again for n ≥ 37. Note that the consumer surplus is maximized at
n = 14, rather than at n = 6.
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4.4 Optimal Market Structure and Comparative Statics

This section examines the optimal market structure and performs comparative statics.

Without feedback effects, the maximum total welfare is achieved as n → ∞. However, with

feedback effects, competition may reduce efficiency, and the maximum welfare may occur at

a finite n∗, which we define as the optimal market structure.

Proposition 4 (Optimal Market Structure). The optimal market structure, n∗, can be non-

monotonic in the information production cost c and the price sensitivity b.

The non-monotonicity in Proposition 4 is driven by feedback effects and allocative effi-

ciency gains. The negative relationship between competition and welfare results from the

sensitivity - rather than the absolute level - of information production to changes in competi-

tion. When information costs are very high, no speculators acquire information, eliminating

feedback effects. Conversely, when costs are very low, all speculators acquire information,

making information production insensitive to competition. Thus, competition reduces wel-

fare only for intermediate information costs where an interior equilibrium emerges.

Figure 6: Optimal Market Structure n∗

Figure 6 illustrates the non-monotonic dependence of the optimal market structure n∗ on

information production cost c. As c decreases, n∗ initially moves from perfect competition

to a duopoly and then expands to three or more firms. In intermediate ranges of c, partial

information production occurs, and fewer firms may dominate more firms in terms of welfare.

For sufficiently low costs, most speculators become informed, making information production
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insensitive to changes in n and leading welfare to rise with increased competition. A similar

pattern emerges for price sensitivity b (see online Appendix B.2).

Average profitability and market uncertainty. To better illustrate their economic in-

tuition and implications, we discuss the role of average profitability and market uncertainty

in shaping the link between competition and total welfare when n∗ < ∞. Specifically, we use

numerical methods to address the complexity of the auxiliary function g1(α, n), complement-

ing our earlier analytical results. Theoretical insights, including Lemma 3 and the following

discussions in Section 4.3, provide guidance for the numerical analysis. We anticipate that

a negative relationship between competition and total welfare is more likely to occur with

high market uncertainty (AH − AL) and low average profitability
(
Ā−MC

)
. Meanwhile, by

Equation (8) and Equation (11), these two factors also contribute to information production

α̂ in equilibrium. Define:

∆Wn := W (α̂n, n)−W (α̂n−1, n− 1) .

Obviously, a negative relationship between product market competition and total welfare

ensues when ∆Wn < 0 holds. We also focus on interior solutions of α̂n. Sensitivity analyses

performed on a wide range of model parameter values have shown a similar pattern.

Figure 7: Average Profitability, Information Quality and Welfare.

Then we analyze the impact of average profitability (Ā−MC) on equilibrium information

production α̂n and total welfare ∆Wn. For this exercise, we fix the value of (AH − AL) and
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other parameters. The results are plotted in Figure 7. We make three observations: First,

Figure 7a shows that α̂n is always lower than α̂n−1, which is consistent with the prediction

of Proposition 2 that product market competition dampens the incentive for speculators to

produce information. Second, both α̂n and α̂n−1 increase strictly in average profitability,

implying that higher profitability improves information acquisition. Third, Figure 7b shows

that the welfare gain ∆Wn is smaller for a lower level of average profitability. In particular,

when the average profitability is sufficiently low, ∆Wn can be negative, indicating that

intensified competition decreases the total welfare. Note that this result coincides with our

discussion following Lemma 3.

Figure 8: Market Uncertainty, Information Quality and Welfare.

Next, we investigate the effects of market uncertainty on α̂n and ∆Wn by varying

(AH − AL) while keeping the average profitability (Ā − MC) and other parameters un-

changed. These results are depicted in Figure 8. We make two observations: First, Figure

8a shows that both α̂n and α̂n−1 increase as (AH − AL) increases, which implies that in-

creasing market uncertainty improves information production. Second, as shown in Figure

8b, competition can decrease total welfare when market uncertainty is high, despite the high

incentive of information production (i.e., α̂ is high).

This illustrates a sharp difference between average profitability and market uncertainty.

Although both exhibit similar effects on information production, the welfare implications

of competition diverge. Specifically, a negative relationship between competition and total

welfare is more likely to occur when: (i) the average profitability is low; or (ii) the market

uncertainty is high. To understand this divergence, we highlight two observations: First, an
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increase in average profitability directly increases total welfare, which reduces the relative

impact of information production, while an increase in market uncertainty amplifies that of

information production (see Equation (14)). Second, the negative link between competition

and welfare depends on the relative gap, rather than the absolute intensity, in information

production when the level of competition varies.

4.5 Implications for Horizontal Mergers

To better illustrate the empirical implications for horizontal mergers, we first compare a

monopoly (i.e., n = 1) and a duopoly (i.e., n = 2) in perfectly symmetric Cournot competi-

tion.By Equation (14), the total welfare for a monopolist seller is given by:

W (α̂1, 1) =
3

32b

(
4
(
Ā−MC

)2
+ (1− γ̂1) (AH − AL)

2
)

(17)

and that for two duopoly sellers are given by

W (α̂2, 2) =
1

9b

(
4
(
Ā−MC

)2
+
(
1− (γ̂2)

2
)
(AH − AL)

2
)

(18)

Obviously, if we fix the size of informed traders α̂1 = α̂2 (or equivalently γ̂1 = γ̂2) to shut

down the information production channel, a duopoly market always outperforms a monopoly

in total welfare. In other words, any regulatory action based on market concentration mea-

sures is well-founded. However, if we allow for endogenous information production, the above

insight might not hold, as illustrated by Lemma 4 below.

Lemma 4 (Monopoly VS. Duopoly).

Assume that AH > AL = MC. Denote κ = (2θ − 1)(AH − AL)
2/b.

(i) When κ
12

≤ c < 11
108

κ, then W (α̂1, 1) > W (α̂2, 2); and

(ii) when c ≥ 11
108

κ or c < (1−θ)(2−θ)κ
9

, then W (α̂1, 1) ≤ W (α̂2, 2).

We briefly comment on Lemma 4. First, a monopoly dominates a duopoly for an inter-

mediate level of information production cost c. In Statement (i), a lower bound c ≥ κ
12

is

imposed to completely remove information production in a duopoly market (i.e., α̂2 = 0),

while an upper bound c < 11κ
108

ensues that the incentive to produce information is strong

enough in a monopoly market (i.e., α̂1 ↑). Second, when information production is too cheap

or too costly, the relative gap in information production is small, and thus a duopoly market

is more efficient due to lowered market concentration.
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Obviously, our theory differs sharply from the existing literature on merger analysis,

which largely ignores the information efficiency of the stock market and often features

a monotonic relationship between competition and total welfare in perfectly symmetric

Cournot competition when all firms are equally efficient (see, e.g., Farrell and Shapiro, 1990).

In contrast, even in the simplest case here, merging two competing and equally efficient firms

into a monopolist can improve social welfare for an intermediate level of information pro-

duction cost when market concentration significantly increases information production. This

naturally arises when managerial learning from the stock market benefits production deci-

sions in a feedback loop. Our theory highlights the importance of considering the interaction

between the product market and the financial market in M&As regulations from an infor-

mational perspective.15

Remark 2 (Beyond Monopoly & Duopoly). We can extend the analysis beyond two firms.

Theorem 1 offers a framework for this analysis. Define m0 := inf{m ∈ N : Φ(m) ≥ 1}.

For n ≥ N(m0), over-competition emerges in terms of total welfare within an intermediate

range of information production costs, as it is strictly dominated by a market structure with

n = m0. Thus, reducing the number of firms to n < N(m0) can enhance total welfare, though

the optimal number n∗ requires numerical determination.16

Furthermore, our treatment of M&As closely follow the spirit of Cournot competition in

the long-run sense, differing from that of Nocke and Whinston (2022), where the post-merger

HHI merely aggregates pre-merger market shares. Our analysis complements existing M&A

frameworks by emphasizing the interplay between financial and product markets, alongside

well-documented factors such as production efficiency asymmetries (Farrell and Shapiro,

1990), synergies (see, e.g., Maksimovic and Phillips, 2001), disclosure (Xiong and Yang,

2021), investment (Mermelstein et al., 2020; Motta and Tarantino, 2021), and innovation

(Yi, 1999; Aghion et al., 2005; Segal and Whinston, 2007; Spulber, 2013).

A “calibrated” illustration. We present a numerical example to illustrate the welfare

effects of a horizontal merger under the feedback effect. Although this is not intended as a

formal calibration directly comparable to the US economy, it offers qualitative insights into

15While this non-monotonic relationship between competition and total welfare also appears in other
studies on, the non-monotonicity there stems from some presumptions of anticompetitive effects such as cost
synergies (see, e.g., Nocke and Whinston, 2022). We abstract away from those considerations to focus on
the impact of informational feedback.

16The dominated structures n ≥ N(m) can also be chosen conditional on the information cost c.
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Figure 9: Estimation of η by industries

Notes: This histogram summarizes the estimation of η across industries, which are classified following
Gu (2016) and Hou and Robinson (2006). The estimation is based on model parameters calibrated with
US market data over 2000–2010. A negative value of η indicates that the welfare effect of a horizontal
merger will be overestimated if the feedback effect is ignored. A positive value of η then suggests that
the feedback effect augments the welfare effect of a horizontal merger.

the significance of feedback effects in assessing the economic implications of mergers.

Specifically, the welfare effect of a horizontal merger, both with and without feedback

effects, can be expressed as W (α̂n, n) − W (α̂n−1, n− 1) and W (0, n) − W (0, n − 1). We

then define the impact of informational feedback from the stock market on the welfare of

horizontal mergers as:

η =
W (α̂n, n)−W (α̂n−1, n− 1)

W (0, n)−W (0, n− 1)
− 1. (19)

Using US market data and the calibration method detailed in online Appendix B.3, we

estimate model parameters and compute the corresponding values of η in all industries after

excluding firms in the financial and utility industries, as well as industries with negative

gross margins.

Figure 9 illustrates the industry-level distribution of η values. The key findings are as

follows. On the one hand, in 64.32% of all industries, including the first two bars in Figure 9,
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the feedback effects of the stock market significantly weaken the welfare effect of horizontal

mergers by more than 10%. Furthermore, in 26.43% of all industries, the impact of stock

market feedback exceeds 100%, which implies that it completely reverses the welfare effects.

On the other hand, in 2.20% of all industries, feedback effects amplify the welfare effect of

mergers (referred to as the augmentation effect).

Overall, these results highlight that feedback effects from the stock market constitute

a critical factor in analyzing the welfare impact of horizontal mergers and the efficiency of

market competition. Ignoring these effects can lead to misinterpretations of merger outcomes.

5 Further Discussions

5.1 Cross-Asset Trading

Although standard in the literature (see, e.g., Foucault and Frésard, 2014, 2019), bounded

asset positions (xi
k ∈ [−1, 1]) in our baseline model may not be as harmless as in other

settings: If the total product market size is stable, with an increase in the number of firms,

the size and, consequently, the equity value of each firm decrease. Therefore, the dollar

value of the maximum trade size could decrease in n, and thus the incentive to acquire

information might mechanically decrease. To address this concern and show robustness, we

now allow cross-asset trading, in which a fraction of speculators can trade all stocks. All

baseline findings continue to hold.

Specifically, we consider an economy with n ≥ 2 identical firms competing in quantities

and a stock exchange, which is populated with four types of investors, including: (i) a mass

λ ∈ [0, 1] of risk-neutral L-traders k ∈ [0, λ], who choose whether to acquire a costly signal

mk at a cost cL > 0, and trade all stock shares yik ∈ [−1, 1] for all i; (ii) a mass 1 − λ of

risk-netural S-traders k ∈ [0, 1− λ] for each stock i, who choose whether to acquire a costly

signal mi
k at a cost cS > 0 and only trade shares xi

k ∈ [−1, 1] for the ith stock. (iii) liquidity

traders with aggregate demand zi, uniformly distributed over [−1, 1], for each firm i, and

(iv) risk-neutral market makers who set prices to clear each stock.

Let yi =
∫ αL

0
yikdk and xi =

∫ αi,S

0
xi
kdk denote the aggregate demand for stock i by L- and

S-traders. Recall that the aggregate order submitted by liquidity traders is zi. Thus, the

total order flow fi for the ith stock is then given by: fi = xi + yi + zi. As in Goldstein et al.

(2014), we assume that cL ≤ cS, i.e., an L-trader has a relatively lower cost of information
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production.17 For ease of reference, let αL and αi,S denote the measure of informed L-traders

and that of informed S-traders for the ith firm. Define α := (αL, α1,S, · · · , αn,S). All other

features of the model are the same. Note that when λ = 0, it reduces to the baseline setup.

Figure 10: Trading Opportunities & (Non-monotonic) Information Production

We briefly summarize the key insights, while the equilibrium analysis can be found in

online Appendix B.4. First, L-traders have a stronger incentive to acquire information than

S-traders, given that cL ≤ cS. Actually, the incentive for L-traders to acquire information

can even increase in the number of firms n, which differs sharply from S-traders for whom the

incentive for information acquisition is always maximized in a monopoly. This complexity

is illustrated in Figure 10.18 In particular, when we move from a monopoly (n = 1) to a

duopoly (n = 2), the size of the informed L-traders α̃L first increases and then decreases.19

Second, our baseline result remains valid in the presence of L-traders, because the incen-

tive for information production for L-traders will drop quickly after achieving its maximum

level, and thus a negative relationship between competition and total welfare ensues.

5.2 Cross-Asset Learning

In the baseline model, we assume that the market maker of the ith firm does not observe

the order flow of the other firms. Therefore, there may be arbitrage opportunities between

17To be precise, Goldstein et al. (2014) sets cS > cL = 0, i.e., an L-trader costlessly observes a signal.
18Parameters used for the extended model with cross-asset trading are: λ = 0.8, θ = 0.75, b = 3.5,

AH = 20, AL = 10, MC = 9, and cL = cS = 1.5.
19Vives (1985) shows that the profit of competing firms vanishes at a speed order of 1/n. When multiplied

by the number of firms n, the trading profits for L-traders can be non-monotonicity in n. We term this the
”trading opportunity effect” in cross-asset trading.
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competing firms. This section removes this restriction and considers cross-asset learning,

which refers to the possibility that market makers observe the order flow in all stocks before

setting the price (see, e.g., Pasquariello and Vega, 2015; Foucault and Frésard, 2019). Specif-

ically, we modify the more general setup in Section 5.1 by allowing for cross-asset learning,

i.e., the information set for market makers is Ω = {f1, · · · , fn}. Again, as in Kyle (1985),

risk-neutral market makers absorb excess order flow and break even only in expectation.

Thus, the stock price of the ith firm is given by si(Ω) = E[Vi|Ω].

Here, we briefly discuss the main results with cross-asset learning, and delegate the

formal analysis to online Appendix B.5. First, the baseline result holds in the presence of

cross-asset learning when there are only S-traders. Intuitively, cross-asset learning empowers

market makers, reducing trading profits for speculators, except for the special case with a

monopoly. This in turn makes the trading profits more sensitive to the change in the number

of competing firms when it is small. Thus, the information feedback channel is strengthened.

Second, the non-monotonicity can also appear when the cost of information production

is small such that all L-traders choose to acquire information. Note that L-traders have a

stronger incentive to acquire information compared to S-traders. Cross-asset trading makes

S-traders more prone to competition compared to L-traders, and thus L-traders may crowd

out S-traders due to their trading opportunities.

Third, total welfare can strictly increase with the number of firms n in the presence of

cross-asset learning when S-traders are totally absent. In practice, however, markets are

unlikely to consist solely of L-traders, as segmentation due to various frictions is common;

see, e.g., Goldstein et al. (2014) for real-world examples of market segmentation. Moreover,

even in markets with only L-traders, the efficiency implications of firm competition can still

be significantly influenced by informational feedback from the stock market (though not to

the extent of creating a non-monotonic relationship between competition and welfare). This

feedback effect often exacerbates allocative efficiency losses as product market competition

weakens, amplifying the welfare losses associated with market power concentration. Thus,

the feedback effect remains a critical factor to consider in regulating horizontal mergers, even

in the absence of S-traders. For a detailed discussion on the divergent impacts of cross-asset

learning on L-traders and S-traders, see online Appendix B.5.
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5.3 Investor Welfare

Investor welfare, especially that of liquidity traders, is largely missing from the total wel-

fare defined in Equation (14), which essentially captures the welfare of the product market,

including both the consumer surplus and the producers’ surplus. We now show that our the-

oretical insights still hold when we include investor welfare in the calculation of total welfare.

Recall that: (1) market makers always break even in expectation; (2) informed speculators

incur acquisition costs but earn positive trading profits; (3) liquidity traders incur trading

losses but enjoy liquidity benefits; and (4) informed speculators’ trading profits equal liquid-

ity traders’ trading losses. Although liquidity benefits are conceptually endogenous, most

papers treat them and liquidity trading as completely exogenous. The total cost of informa-

tion acquisition varies with the size of informed speculators α, and given that we focus on

the benefits of information, the cost of information acquisition should not be overlooked.

Specifically, let B(n) denote the aggregate benefit of liquidity trading. Thus, total welfare

W PF , including both product market welfare and investor welfare, can be measured as:

W PF = W − n ∗ α̂n ∗ c+B(n) (20)

where W (α̂n, n) is given by Equation (14).

When the aggregate benefits of liquidity trading are exogenously fixed (i.e., B(n) = B0 for

some non-negative constant B0), a non-monotonic relationship between product competition

and total welfare can arise, and the optimal market structure features a finite number of firms.

Such non-monotonicities may manifest under other specifications if the aggregate benefits

of liquidity trading are proportional to the number of stocks, although the optimal market

structure might approach perfect competition when the benefits of liquidity trading become

dominant. Online Appendix B.6 contains a formal analysis.

5.4 Discount Rates

In our primary analysis, we have not accounted for the effects of discounting. However, as

Cochrane (2011) highlights, discount rates, rather than cash flows, may drive movements in

stock prices, at least at the aggregate level. Given that variations in industrial competition

can influence discount rates (Dou et al., 2021), incorporating discounting into the evaluation

of firm value and stock prices could potentially alter our findings. To address this, we extend
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our baseline model to explore the implications of discounting.

Let rn ≥ 0 denote the discount rate when n symmetric firms compete in the industry.

Then, the expected firm value given in Equation (2) can be rewritten as:

Vi (qi) =
1

1 + rn
E [TPi (qi) | Fm]

Note that the profit function TPi (qi) is linear in the parameters A, b and MC, as shown

in Equation (1). Thus, introducing discounting into the model is equivalent to replacing the

original parameters (A, b,MC) with a set of new parameters (A′, b′,MC ′), where

A′
ω =

Aω

1 + rn
, b′ =

b

1 + rn
, and MC ′ =

MC

1 + rn

Furthermore, the linearity implies that the baseline results in Section 3 can be obtained

using (A′, b′,MC ′). We now discuss the relationship between competition and discount rates

and how it affects our results in Section 4. First, we assume that the discount rate rn strictly

increases in n (that is, ∂rn
∂n

> 0) because increased competition can erode profitability and

increase risk. This assumption is consistent with the existing literature that documents a

positive correlation between competition and discount rates (Dou et al., 2021). We can use

the chain rule of differentiation to get: ∂Π′(n,α)
∂n

= 1
1+rn

∂Π(n,α)
∂n

− 1
(1+rn)

2
∂rn
∂n

< 1
1+rn

∂Π(n,α)
∂n

and

∂Π′(n,α)
∂α

= 1
1+rn

∂Π(n,α)
∂α

, which further implies:

∂α̂′
n

∂n
<

∂α̂n

∂n
< 0

Thus, when discounting is considered, increased competition discourages speculators from

acquiring information. More importantly, discounting can exacerbate this negative impact of

competition on information production. Consequently, we can reasonably anticipate that our

main result will not only remain valid but may also be strengthened by the compounding

effects of discounting. Specifically, reduced information production in the stock market,

driven by intensified competition, could significantly decrease the allocative efficiency of the

real economy, potentially leading to a negative relationship between competition and real

efficiency due to feedback effects.
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5.5 Dynamic Trading

Most existing studies focus on a static framework when modeling Cournot competition

and feedback effects, as incorporating dynamic trading and competition can rapidly render

the model intractable (Edmans et al., 2015; Goldstein and Yang, 2019; Lin et al., 2019).

Consequently, we only provide an informal exploration of how our main results might be

affected in a dynamic setting.

In general, introducing multiple rounds of trading creates opportunities for market ma-

nipulation, as the feedback effect from the stock market incentivizes speculators to influence

stock prices (Edmans et al., 2015; Goldstein and Guembel, 2008). Specifically, uninformed

traders may profit from selling the stock when feedback effects are present, partly because

their trading distorts the information content of stock prices and misleads the firm’s invest-

ment decisions. Consequently, we may expect that market manipulation, stemming from

dynamic trading opportunities, could influence our main results by altering the informative-

ness of stock prices.

However, we argue that manipulation is more likely to occur in the stock trading of

small firms rather than large firms. For instance, stocks characterized by high illiquidity

and significant information asymmetry are more susceptible to manipulation (Comerton-

Forde and Putniņš, 2014), and small-cap stocks typically exhibit low liquidity and limited

transparency (Banz, 1981; Acharya and Pedersen, 2005). The reasoning is as follows. First,

intensified competition reduces the size of firms, which in turn increases the potential for

market manipulation. Second, information distortion caused by market manipulation can

lead to a loss in real efficiency through feedback effects. As a result, our main findings should

remain valid, and dynamic trading opportunities can further amplify the negative impact

of competition on welfare by further suppressing the informativeness of stock prices when

competition intensifies.

5.6 Additional Robustness Analysis

We discuss the robustness of our main results in three additional extensions, including

the cost of information acquisition, the risk attitude of speculators, and firm heterogeneity.

First, our results depend on how product market competition affects speculators’ costs

of information acquisition. If increased competition raises these costs, reducing competition

(e.g., via horizontal mergers) would encourage greater information production in the stock
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market and generate gains in allocative efficiency through the feedback mechanism. In

contrast, if intensified competition reduces these information costs, horizontal mergers would

suppress information production and harm allocative efficiency. However, empirical findings

by Farboodi et al. (2022) indicate that information production is more active among larger

firms. Since intensified competition shrinks the size of firms, information acquisition costs

likely increase with competition. Hence, horizontal mergers—by decreasing competition

and increasing firm size—should lower these costs, increase information production, and

strengthen the feedback effect. Consequently, horizontal mergers are more likely to produce

positive welfare effects when this feedback mechanism is present.

Second, traders and speculators are often risk-averse in practice, but our main findings

remain valid. Increased competition raises firms’ risks, discouraging risk-averse speculators

from entering the market. This further reduces information production compared to the

risk-neutral scenario, significantly harming real efficiency.

Third, we focus on symmetric Cournot competition and abstract from firm heterogeneity

and synergies typically emphasized in merger analyses, where welfare effects depend on bal-

ancing market concentration (higher prices due to reduced competition) against operating

efficiencies (cost reductions from synergies). For example, merging firms with complemen-

tary strengths, such as lower production costs and superior distribution, can create synergies

that improve efficiency. Similarly, synergies can also be achieved through shared technologies

or improved management practices. However, the main insights should extend to scenar-

ios with firm heterogeneity and synergies. After a horizontal merger, reduced competition

improves information production in the stock market. Since managers often misestimate

market conditions, more informative stock prices help them correct biases and improve de-

cisions. Therefore, stock market feedback provides an additional important channel that

affects the welfare implications of horizontal mergers.

6 Conclusion

By incorporating information production and learning into a standard Cournot game, we

analyze the interaction between product market competition and informational feedback in

financial markets. Although intensified competition can reduce the concentration of market

power and enhance the economic efficiency in production, it also reduces the incentives for

speculators to acquire proprietary information on firms’ market prospects. Consequently,
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a novel trade-off between economic efficiency and informational efficiency emerges endoge-

nously when production decisions depend on the information conveyed in stock prices. In-

tensified product market competition can discourage information production in the stock

market and generate losses in allocative efficiency through feedback effects, thus impacting

the positive welfare effects of competition on real efficiency. When the feedback effect of stock

prices is sufficiently strong, a negative relationship between product market competition and

total welfare can even arise. Our model provides new insights for antitrust regulations in

horizontal mergers, and a guidance for future studies exploring the intersection of financial

market efficiency and product market competition.
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Comerton-Forde, Carole and Tālis J Putniņš, “Stock price manipulation: Prevalence and
determinants,” Review of Finance, 2014, 18 (1), 23–66.

Compte, Olivier, Frederic Jenny, and Patrick Rey, “Capacity constraints, mergers and
collusion,” European Economic Review, 2002, 46 (1), 1–29.

Cournot, Augustine, “Of the competition of producers,” Chapter 7 in Researches into the Math-
ematical Principles of the Theory of Wealth, 1838.

Covarrubias, Matias, Germán Gutiérrez, and Thomas Philippon, “From good to bad
concentration? US industries over the past 30 years,” NBER Macroeconomics Annual, 2020, 34
(1), 1–46.

Dou, Winston Wei, Yan Ji, and Wei Wu, “Competition, profitability, and discount rates,”
Journal of Financial Economics, 2021, 140 (2), 582–620.

Dow, James and Gary Gorton, “Stock market efficiency and economic efficiency: Is there a
connection?,” The Journal of Finance, 1997, 52 (3), 1087–1129.

, Itay Goldstein, and Alexander Guembel, “Incentives for information production in mar-
kets where prices affect real investment,” Journal of the European Economic Association, 2017,
15 (4), 877–909.

Easley, David, Nicholas M Kiefer, Maureen O’hara, and Joseph B Paperman, “Liquidity,
information, and infrequently traded stocks,” The Journal of Finance, 1996, 51 (4), 1405–1436.

Edmans, Alex, Itay Goldstein, and Wei Jiang, “The real effects of financial markets: The
impact of prices on takeovers,” The Journal of Finance, 2012, 67 (3), 933–971.

, , and , “Feedback effects, asymmetric trading, and the limits to arbitrage,” American
Economic Review, 2015, 105 (12), 3766–3797.

, Sudarshan Jayaraman, and Jan Schneemeier, “The source of information in prices and
investment-price sensitivity,” Journal of Financial Economics, 2017, 126 (1), 74–96.

Farboodi, Maryam, Adrien Matray, Laura Veldkamp, and Venky Venkateswaran,
“Where has all the data gone?,” The Review of Financial Studies, 2022, 35 (7), 3101–3138.

Farrell, Joseph and Carl Shapiro, “Horizontal mergers: an equilibrium analysis,” The Ameri-
can Economic Review, 1990, pp. 107–126.

Fishman, Michael J and Kathleen M Hagerty, “Disclosure decisions by firms and the com-
petition for price efficiency,” The Journal of Finance, 1989, 44 (3), 633–646.

Foucault, Thierry and Laurent Frésard, “Learning from peers’ stock prices and corporate
investment,” Journal of Financial Economics, 2014, 111 (3), 554–577.

and , “Corporate strategy, conformism, and the stock market,” The Review of Financial
Studies, 2019, 32 (3), 905–950.

Gao, Pingyang and Pierre Jinghong Liang, “Informational feedback, adverse selection, and
optimal disclosure policy,” Journal of Accounting Research, 2013, 51 (5), 1133–1158.

Geurts, Karen and Johannes Van Biesebroeck, “Employment growth following takeovers,”
The RAND Journal of Economics, 2019, 50 (4), 916–950.

Glosten, Lawrence R and Paul R Milgrom, “Bid, ask and transaction prices in a specialist
market with heterogeneously informed traders,” Journal of financial economics, 1985, 14 (1),
71–100.

Goldstein, Itay, “Information in financial markets and its real effects,” Review of Finance, 2023,
27 (1), 1–32.

and Alexander Guembel, “Manipulation and the allocational role of prices,” The Review of
Economic Studies, 2008, 75 (1), 133–164.

37



and Liyan Yang, “Good disclosure, bad disclosure,” Journal of Financial Economics, 2019,
131 (1), 118–138.

, Emre Ozdenoren, and Kathy Yuan, “Trading frenzies and their impact on real investment,”
Journal of Financial Economics, 2013, 109 (2), 566–582.

, Yan Li, and Liyan Yang, “Speculation and hedging in segmented markets,” The Review of
Financial Studies, 2014, 27 (3), 881–922.

Grossman, Sanford J and Joseph E Stiglitz, “On the impossibility of informationally efficient
markets,” The American economic review, 1980, 70 (3), 393–408.

Gu, Lifeng, “Product market competition, R&D investment, and stock returns,” Journal of Fi-
nancial Economics, 2016, 119 (2), 441–455.

Guesnerie, Roger and Oliver Hart, “Welfare losses due to imperfect competition: asymptotic
results for Cournot Nash equilibria with and without free entry,” International Economic Review,
1985, pp. 525–545.

Han, Bing and Liyan Yang, “Social networks, information acquisition, and asset prices,” Man-
agement Science, 2013, 59 (6), 1444–1457.

Hellwig, Martin F, “On the aggregation of information in competitive markets,” Journal of
economic theory, 1980, 22 (3), 477–498.

Hemphill, C Scott and Nancy L Rose, “Mergers that harm sellers,” Yale Law Journal, 2017,
127, 2078.

Hou, Kewei and David T Robinson, “Industry concentration and average stock returns,” The
journal of finance, 2006, 61 (4), 1927–1956.

Huang, Chong and Xiaoqi Xu, “Informed Trading and Product Market Competition,” Available
at SSRN 4451871, 2023.

Jayaraman, Sudarshan and Joanna Shuang Wu, “Is silence golden? Real effects of mandatory
disclosure,” The Review of Financial Studies, 2019, 32 (6), 2225–2259.

Kreps, David M and Jose A Scheinkman, “Quantity precommitment and Bertrand competi-
tion yield Cournot outcomes,” The Bell Journal of Economics, 1983, pp. 326–337.

Kyle, Albert S, “Continuous auctions and insider trading,” Econometrica: Journal of the Econo-
metric Society, 1985, pp. 1315–1335.

Landes, William M and Richard A Posner, “Market power in antitrust cases,” J. Reprints
Antitrust L. & Econ., 1997, 27, 493.

Leland, Hayne E, “Insider trading: Should it be prohibited?,” Journal of political economy, 1992,
100 (4), 859–887.

Lin, Tse-Chun, Qi Liu, and Bo Sun, “Contractual managerial incentives with stock price
feedback,” American Economic Review, 2019, 109 (7), 2446–2468.

Luo, Yuanzhi, “Do insiders learn from outsiders? Evidence from mergers and acquisitions,” The
Journal of Finance, 2005, 60 (4), 1951–1982.

Maksimovic, Vojislav and Gordon Phillips, “The market for corporate assets: Who engages
in mergers and asset sales and are there efficiency gains?,” The Journal of Finance, 2001, 56 (6),
2019–2065.

Mermelstein, Ben, Volker Nocke, Mark A Satterthwaite, and Michael D Whinston,
“Internal versus external growth in industries with scale economies: A computational model of
optimal merger policy,” Journal of Political Economy, 2020, 128 (1), 301–341.

Miller, Nathan H and Matthew C Weinberg, “Understanding the price effects of the Miller-
Coors joint venture,” Econometrica, 2017, 85 (6), 1763–1791.

38



Motta, Massimo and Emanuele Tarantino, “The effect of horizontal mergers, when firms
compete in prices and investments,” International Journal of Industrial Organization, 2021, 78,
102774.

Nevo, Aviv, “Mergers with differentiated products: The case of the ready-to-eat cereal industry,”
The RAND Journal of Economics, 2000, pp. 395–421.

Nocke, Volker and Michael D Whinston, “Dynamic merger review,” Journal of Political
Economy, 2010, 118 (6), 1200–1251.

and , “Concentration thresholds for horizontal mergers,” American Economic Review, 2022,
112 (6), 1915–1948.

Pasquariello, Paolo and Clara Vega, “Strategic cross-trading in the US stock market,” Review
of Finance, 2015, 19 (1), 229–282.

Peress, Joel, “Product market competition, insider trading, and stock market efficiency,” The
Journal of Finance, 2010, 65 (1), 1–43.

Polk, Christopher and Paola Sapienza, “The stock market and corporate investment: A test
of catering theory,” The Review of Financial Studies, 2008, 22 (1), 187–217.

Porter, Robert H, “Mergers and coordinated effects,” International Journal of Industrial Orga-
nization, 2020, 73, 102583.
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Appendix

A Proofs of Lemmas and Propositions

A.1 Proof of Lemma 1

Proof. We first compute the beliefs of the market makers. Recall that the total order flow for the

ith stock is fi = αi(2θ− 1) ∗ (1({ω = H})− 1({ω = L})) + zi.
20 Denote γi = 1− αi(2θ− 1). Note

that condition fi > γi contradicts the event that ω = L because: (1) fi = zi + xi by definition;

(2) xi = −αi(2θ − 1) if ω = L by the law of large numbers; and (3) zi ≤ 1. Conversely, when

zi > γi − αi(2θ − 1) and ω = H, then fi > γi. Therefore, the aggregate order flow fi is a sufficient

statistic to update the beliefs of the market makers. In summary, if the aggregate order flow satisfies

fi > γi, it can be inferred that ω = H. Similarly, if the aggregate order flow of stock i is fi < −γi,

the market makers will infer that ω = L. Furthermore, when the aggregate order flow satisfies

fi ∈ (−γi, γi), an application of the Bayes rule implies that

Pr (ω = H | fi ∈ (−γi, γi)) =
Pr(ω = H) Pr (fi ∈ (−γi, γi) | ω = H)

Pr (fi ∈ (−γi, γi))
=

1

2

because Pr (fi ∈ (−γi, γi) | ω = H) = Pr (−γi − αi(2θ − 1) ≤ zi ≤ γi − αi(2θ − 1)) = γi and

Pr (fi ∈ (−γi, γi)) = Pr (fi ∈ (−γi, γi) , ω = H) + Pr (fi ∈ (−γi, γi) , ω = L) = γi. This also means

that an order flow such that fi ∈ [−γi, γi] is uninformative.

Second, we analyze the belief updating rule for the ith manager, given the equilibrium prices

{si (fi)}1≤i≤n. Specifically, when si (fi) = sH is observed, the manager i infers that fi > γi and

thus ω = H, which is exactly the reason for the market makers. Similarly, when si (fi) = sL is

observed, it can be inferred that fi < −γi and thus ω = L. Finally, when si (fi) = siM , it must

be the case that fi ∈ (−γi, γi), implying that the ith firm stock price is not informative about

the market prospects. The ith manager depends on all other firms’ stock prices to infer about the

state, and there are three cases, including: (i) there exists some j ̸= i such that sj = sH , then

again fj > γj and thus ω = H; (ii) if there exists some j ̸= i such that sj = sL, then fj < −γj and

thus ω = L; (iii) if for all j ̸= i such that sj = sjM , then it can be inferred that all stock prices are

uninformative.

Next, we analyze the ith firm’s production strategy, given the manager’s posterior belief on the

state ω after observing stock prices. Let θm be the posterior probability of ω = H. Then, the ith

manager’s problem is to choose the quantity qi to maximize:

Vi (qi) = E [TPi (qi) | θm] = qi (Am − b (qi + q−i)−MC) (A.1)

where Am = E[Ã|Fm] = θmAH + (1− θm)AL is the expected value of the market prospect A

conditional on posterior belief. From Equation (A.1), we know that Vi (qi) is concave in qi, and

thus q∗i (q−i) = 1
2b (Am − bq−i −MC). Given a common posterior belief updating rule, we can

invoke qi = qj for any i ̸= j. Therefore, q∗i = Am−MC
(n+1)b .

20
1({x ∈ A}) is an indicator function that equals one only when x ∈ A holds, and equals zero otherwise.
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Denote qH = AH−MC
(n+1)b , qL = AL−MC

(n+1)b , and βi =
∏

j ̸=i γj . Then, combining the belief updating

rule of the common posterior, we conclude: (1) if sj = sH for some j, then θm = 1, Am = AH and

q∗i = qH ; (2) if sj = sL for some j, then θm = 0, Am = AL and q∗i = qL; and (3) if sj = sjM for all

1 ≤ j ≤ n, then θm = 1
2 , Am = Ā and q∗i = qM .

We now check that the stock price rule si(fi) in Equation (6) satisfies condition (4). First,

when the total order flow of the ith stock satisfies fi > γi, then ω = H, and thus q∗i = qH . By

Equations (1) and (2), E [Vi (q
∗
i ) | fi] =

(AH−MC)2

(n+1)2b
, which is equal to sH . Thus, condition (4) is

satisfied when fi > γi. Second, when the total order flow satisfies fi < −γi, the net demand for the

ith stock reveals that ω = L, and thus q∗i = qL. Hence, E [Vi (q
∗
i ) | fi] =

(AL−MC)2

(n+1)2b
for fi < −γi,

which is equal to sL. Thus, for fi < −γi, condition (4) is satisfied.

Third, when fi ∈ (−γi, γi), the investor demand for the ith stock is not informative about the

state, i.e., Pr (ω = H | fi ∈ (−γi, γi)) = 1
2 . Furthermore, by the argument of common posterior

belief above, the manager i will produce qH if sj = sH for some j ̸= i, produce qL if sj = sL

for some j ̸= i, and produce qM if sj = sjM for all j ̸= i. Thus, given that fi ∈ (−γi, γi) and

∃j ̸= i : sj = sH , the ith firm’s total profit at time t = 1 from producing qH is

TPH =
(AH −MC)2

(n+ 1)2b

When fi ∈ (−γi, γi) and ∃j ̸= i : sj = sL, firm i ’s total profit from producing qL is

TPL =
(AL −MC)2

(n+ 1)2b
.

When fi ∈ (−γi, γi) and sj = sjM for ∀j ̸= i, we deduce that: (1) if ω = H, firm i ’s total profit

in t = 1 from producing qM is

TPMH =
(n+ 1)

(
Ā−MC

)
(AH −MC)− n

(
Ā−MC

)2
(n+ 1)2b

;

and (2) if ω = L, firm i ’s total profit in t = 1 from producing qM is

TPML =
(n+ 1)

(
Ā−MC

)
(AL −MC)− n

(
Ā−MC

)2
(n+ 1)2b

.

Furthermore, by Equation (2), we obtain the following.

E [Vi (q
∗
i ) | fi ∈ (−γi, γi)] = Pr (∃j ̸= i : sj = sH | fi ∈ (−γi, γi))× TPH

+ Pr (∃j ̸= i : sj = sL | fi ∈ (−γi, γi))× TPL

+ Pr
(
∀j ̸= i : sj = sjM , ω = H | fi ∈ (−γi, γi)

)
× TPMH

+ Pr
(
∀j ̸= i : sj = sjM , ω = L | fi ∈ (−γi, γi)

)
× TPML.

To compute E [Vi (q
∗
i ) |fi ∈ (−γi, γi)], we first calculate the conditional probabilities. Applying
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the Bayes rule, we get:

Pr (∃j ̸= i : sj = sH | fi ∈ (−γi, γi)) =
Pr (∃j ̸= i : sj = sH , fi ∈ (−γi, γi))

Pr (fi ∈ (−γi, γi))
. (A.2)

Using the law of total probability, we have

Pr (∃j ̸= i : sj = sH , fi ∈ (−γi, γi)) = Pr (∃j ̸= i : sj = sH , fi ∈ (−γi, γi) , ω = H)

+ Pr (∃j ̸= i : sj = sH , fi ∈ (−γi, γi) , ω = L)

Note that Pr(∃j ̸= i : sj = sH , fi ∈ (−γi, γi) , ω = L) = 0 and that

Pr (∃j ̸= i : sj = sH , fi ∈ (−γi, γi) , ω = H) = Pr(ω = H)× Pr (fi ∈ (−γi, γi) | ω = H)

× Pr (∃j ̸= i : sj = sH | fi ∈ (−γi, γi) , ω = H) =
1

2
(1− βi) γi

Thus, Pr (∃j ̸= i : sj = sH , fi ∈ (−γi, γi)) =
1
2(1− βi)γi.

Plugging this into Equation (A.2), we obtain: Pr (∃j ̸= i : sj = sH | fi ∈ (−γi, γi)) =
1
2 (1− βi).

Analogously, we can show: Pr
(
∃j ̸= i : sj = sL | fi ∈ (−γi, γi)

)
= 1

2 (1− βi) and

Pr(∀j ̸= i : sj = sjM , ω = H|fi ∈ (−γi, γi))

= Pr
(
∀j ̸= i : sj = sjM , ω = L | fi ∈ (−γi, γi)

)
=

1

2
βi

Finally, plugging in these conditional probabilities, we have:

E [Vi (q
∗
i ) | fi ∈ (−γi, γi)] =

2
(
(AH −MC)2 + (AL −MC)2

)
− βi (AH −AL)

2

4(n+ 1)2b

which is equal to siM . Therefore, condition (4) is satisfied for fi ∈ [−γi, γi]. The proof concludes.

A.2 Proof of Lemma 2

Proof. Let Πi

(
xik,m

i
k

)
be the expected profit of the speculator k who trades xik ∈ [−1, 1] shares of

the ith firm when his signal is mi
k, and let V i

2 be the market value of the ith firm at t = 1. Since

each speculator is risk neutral and a price taker in the stock market, speculators will trade the

maximum size possible if they acquire information, i.e., xik = ±1.

First, consider an informed speculator who observes mi
k = H. If he buys the asset, his expected

profit is Πi
k(+1, H) = E

[
V i
2 − si (fi) | mi

k = H,xik = 1
]
.

From the proof of Lemma 1, firm i ’s value at t = 1 is

V i
2 =


TPH if ∃j ∈ {1, . . . , n} such that sj = sH ;

TPMH if ω = H & sj = sjM , ∀j ∈ {1, . . . , n};
TPL if ∃j ∈ {1, . . . , n} such that sj = sL;

TPML if ω = L & sj = sjM ,∀j ∈ {1, . . . , n}.

(A.3)
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Thus, using Equation (A.3), we can calculate Πi(+1, H) as follows:

Πi(+1, H) = Pr
(
ω = H, fi > γi | mi

k = H
)
× (TPH − sH)

+ Pr
(
ω = L, fi < −γi | mi

k = H
)
× (TPL − sL)

+ Pr
(
ω = H, fi ∈ (−γi, γi) , ∃j ̸= i : sj = sH | mi

k = H
)
×
(
TPH − siM

)
+ Pr

(
ω = H, fi ∈ (−γi, γi) , ∀j ̸= i : sj = sjM | mi

k = H
)
×
(
TPMH − siM

)
+ Pr

(
ω = L, fi ∈ (−γi, γi) , ∃j ̸= i : sj = sL | mi

k = H
)
×
(
TPL − siM

)
+ Pr(ω = L, fi ∈ (−γi, γi) , ∀j ̸= i : sj = sjM | mi

k = H
)
×
(
TPML − siM

)
.

Since sH = TPH and sL = TPL, we can rewrite the expression of Πi(+1, H) as:

Πi(+1, H) = Pr
(
ω = H, fi ∈ (−γi, γi) ,∃j ̸= i : sj = sH | mi

k = H
)
×
(
TPH − siM

)
+ Pr

(
ω = H, fi ∈ (−γi, γi) ,∀j ̸= i : sj = sjM | mi

k = H
)
×
(
TPMH − siM

)
+ Pr

(
ω = L, fi ∈ (−γi, γi) ,∃j ̸= i : sj = sL | mi

k = H
)
×
(
TPL − siM

)
+ Pr(ω = L, fi ∈ (−γi, γi) , ∀j ̸= i : sj = sjM | mi

k = H
)
×
(
TPML − siM

)
.

Now, we use the Bayes rule to calculate Pr
(
ω = H, fi ∈ (−γi, γi) ,∃j ̸= i : sj = sH | mi

k = H
)
.

Pr( ω = H, fi ∈ (−γi, γi) , ∃j ̸= i : sj = sH | mi
k = H) =

1

Pr
(
mi

k = H
) × Pr(ω = H)

× Pr (fi ∈ (−γi, γi) | ω = H)× Pr (∃j ̸= i : sj = sH | ω = H, fi ∈ (−γi, γi))

×Pr
(
mi

k = H | ω = H, fi ∈ (−γi, γi) ,∃j ̸= i : sj = sH
))

= θγi (1− βi)

We have used the following facts in the last equation, including:

Pr (∃j ̸= i : sj = sH | ω = H, fi ∈ (−γi, γi)) = Pr (∃j ̸= i : sj = sH | ω = H) = 1− βi;

Pr(mi
k = H | ω = H, fi ∈ (−γi, γi) , ∃j ̸= i : sj = sH = Pr(mi

k = H | ω = H) = θ;

Pr(mi
k = H) =

∑
ω∈{H,L}

Pr(ω) Pr(mi
k = H | ω) = 1

2
.

Similarly, we have:

Pr
(
ω = H, fi ∈ (−γi, γi) , ∀j ̸= i : sj = sjM | mi

k = H
)
= θγiβi;

Pr
(
ω = L, fi ∈ (−γi, γi) ,∃j ̸= i : sj = sL | mi

k = H
)
= γi(1− θ) (1− βi) ;

Pr
(
ω = L, fi ∈ (−γi, γi) , ∀j ̸= i : sj = sjM | mi

k = H
)
= γiβi(1− θ).

Plugging these conditional probabilities back into the formula of Πi(+1, H), we have:

Πi(+1, H) =
(2θ − 1)γi(2 + βi(n− 1))

(
(AH −MC)2 − (AL −MC)2

)
4(n+ 1)2b

> 0
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If instead the speculator sells, his expected profit is

Πi(−1, H) = −
(2θ − 1)γi(2 + βi(n− 1))

(
(AH −MC)2 − (AL −MC)2

)
4(n+ 1)2b

< 0

Thus, the optimal trading strategy is to buy xik = +1 when mi
k = H.

Symmetric reasoning shows that the speculator’s optimal trading strategy is to sell xik = +1

when mi
k = L. And in this case, his trading profit satisfies Πi(−1, L) = Πi(+1, H). Furthermore,

since (AH −MC)2 − (AL −MC)2 = 2
(
Ā−MC

)
(AH −AL), we conclude that

Πi =
(2θ − 1)γi (2 + (n− 1)βi)

(
Ā−MC

)
(AH −AL)

2(n+ 1)2b
.

The proof concludes.

A.3 Proof of Proposition 1

Proof. By Equation (8), ∂Π(α)
∂α < 0. Thus, Π(0) > Π(α) > Π(1) for all α ∈ (0, 1). Furthermore,

by definition, we have: (i) when c ≥ Π(0) =: c, Π(α) < 0 for any α > 0, and thus α̂ = 0; (ii)

when c ≤ Π(1) =: c, Π(α) < 0 for any α < 1, and thus α̂ = 1; and (iii) when c ∈ (c, c), by

the intermediate value theorem and Π(0) − c > 0 > Π(1) − c, there exists a solution α̂ such that

Π(α̂) = c, which is also unique since Π′(α) < 0.

A.4 Proof of Proposition 2

Proof. First, we can use Equation (8) to calculate the partial derivatives:

∂Π(n, α̂n)

∂α̂n
= −

(2θ − 1)2
(
2 + n(n− 1)γ̂n−1

) (
Ā−MC

)
(AH −AL)

2b(n+ 1)2

∂Π(n, α̂n)

∂n
= −

γ̂n(2θ − 1)
(
Ā−MC

)
(AH −AL)

2b(n+ 1)3

{
4 + γ̂n−1

n

(
n− 3 +

(
n2 − 1

)
ln

1

γ̂n

)}
where γ̂n = 1− α̂n(2θ − 1).

By the implicit function theorem, we further have:

∂α̂n

∂n
= −

(
∂Π(n, α̂n)

∂n

)/(
∂Π(n, α̂n)

∂α̂n

)
= − γ̂n

n

(2θ − 1)(n+ 1) (2 + n(n− 1)γ̂nn−1)

(
4γ̂1−n

n + n− 3 + (n+ 1)(n− 1) ln
1

γ̂n

)
(A.4)

Obviously, when n ≥ 3, it is easy to verify that ∂α̂n
∂n < 0. Furthermore, we next show that

∂α̂n
∂n < 0 holds when n = 2. Plugging in n = 2, it yields:

∂α̂n

∂n

∣∣∣∣n = 2 = − γ̂22
6(2θ − 1) (1 + γ̂2)

(
4γ̂−1

2 + 3 ln
1

γ̂2
− 1

)
Since 0 ≤ γ̂n = 1− α̂n(2θ − 1) ≤ 1, the result follows. The proof concludes.
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A.5 Proof of Corollary 1

Proof. We first show that ∂α̂n
∂AH

> 0. Applying the implicit function theorem implies:

∂α̂n

∂AH
= −

(
∂Π(α̂n)

∂AH

)/(
∂Π(α̂n)

∂α̂n

)

We have already shown in the proof of Proposition 2 that ∂Π(α̂n)
∂α̂n

< 0. Hence, it suffices to show

that ∂Π(α̂n)
∂AH

> 0. Again, Using Equation (8), we obtain:

∂Π(α̂n)

∂AH
=

2γ̂n(2θ − 1) (AH −MC)
(
2 + (n− 1)γ̂n

n−1
)

4b(n+ 1)2
> 0

Similarly, we can show that:

∂Π(α̂n)

∂AL
= −

2γ̂n(2θ − 1) (AL −MC)
(
2 + (n− 1)γ̂n

n−1
)

4b(n+ 1)2
< 0,

∂Π(α̂n)

∂MC
= −

γ̂n(2θ − 1) (AH −AL)
(
2 + (n− 1)γ̂n

n−1
)

2b(n+ 1)2
< 0,

∂Π(α̂n)

∂b
= −

γ̂n(2θ − 1)
(
Ā−MC

)
(AH −AL)

(
2 + (n− 1)γ̂n

n−1
)

2b2(n+ 1)2
< 0.

Hence, ∂α̂n
∂AL

< 0, ∂α̂n
∂MC < 0, and ∂α̂n

∂b < 0. The proof concludes.

A.6 Derivation of Equation (14) and (15)

From Lemma 1 and Equation (12), we can calculate total welfare at t = 1 as

W =


WH if si = sH for some i ∈ {1, . . . , n};
WMH if ω = H & si = siM ∀i ∈ {1, . . . , n};
WML if ω = L & si = siM ∀i ∈ {1, . . . , n}; and
WL if si = sL for some i ∈ {1, . . . , n}.

whereWH = n(n+2)(AH−MC)2

2b(n+1)2
,WMH =

n(Ā−MC)((2n+4)(AH−MC)+n(AH−AL))

4b(n+1)2
,WL = n(n+2)(AL−MC)2

2b(n+1)2
,

and WML =
n(Ā−MC)((2n+4)(AL−MC)+n(AL−AH))

4b(n+1)2
.

Then, the expected total welfare is given by:

W = Pr (∃i : si = sH)×WH + Pr
(
∀i : si = siM , ω = H

)
×WMH

+ Pr (∃i : si = sL)×WL + Pr
(
∀i : si = siM , ω = L

)
×WML

From the proof of Lemma 1, we already know that fi > γ̂n (i.e., si = sH) is impossible when

ω = L and fi < γ̂n (i.e., si = sL) is impossible when ω = H. Hence, we have:

W = Pr (∃i : si = sH , ω = H)×WH + Pr
(
∀i : si = siM , ω = H

)
×WMH

+ Pr (∃i : si = sL, ω = L)×WL + Pr
(
∀i : si = siM , ω = L

)
×WML
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To compute W , we use the Bayes rule to calculate Pr(∃i : si = sH , ω = H).

Pr (∃i : si = sH , ω = H) = Pr(ω = H) Pr (∃i : si = sH | ω = H)

Using the expression of si(fi) in Equation (6), we know:

Pr
(
si = siM | ω = H

)
= Pr (−γ̂n ≤ fi ≤ γ̂n | ω = H) = γ̂n

Pr (si = sH | ω = H) = Pr (fi > γ̂n | ω = H) = 1− γ̂n

and thus: Pr (∃i : si = sH | ω = H) = 1− Pr
(
∀i : si = siM | ω = H

)
= 1− (γ̂n)

n.

Since Pr(ω = H) = 1/2, we further have:

Pr (∃i : si = sH , ω = H) =
1− (γ̂n)

n

2

Similarly, we have

Pr (∃i : si = sL, ω = L) =
1− (γ̂n)

n

2
,

Pr
(
∀i : si = siM , ω = H

)
= Pr

(
∀i : si = siM , ω = L

)
=

(γ̂n)
n

2

Therefore, W can be written as

W (α̂n, n) =
n(n+ 2)

8(n+ 1)2b

(
4
(
Ā−MC

)2
+ (1− (γ̂n)

n) (AH −AL)
2
)

Obviously, W depends on n and α̂n, which implicitly depends on n, and we can explicitly write:

W (α̂n, n). Given the monotone relationship between α̂n and n, we know that the expected total

welfare is uniquely determined for any fixed n.

Last, note that we can show for the formula of CS(α̂n, n) in a similar way. Again, from Lemma

1 and Equation (12), we can calculate consumer surplus at t = 1 as

CS =


CSH if si = sH for some i ∈ {1, . . . , n};
CSMH if ω = H & si = siM ∀i ∈ {1, . . . , n};
CSML if ω = L & si = siM ∀i ∈ {1, . . . , n}; and
CSL if si = sL for some i ∈ {1, . . . , n}.

where CSH = n2(AH−MC)2

2b(n+1)2
, CSL = n2(AL−MC)2

2b(n+1)2
, and CSMH = CSML =

n2(Ā−MC)
2

2b(n+1)2

Furthermore, similar to W̄ , we have:

CS = Pr (∃i : si = sH , ω = H)× CSH + Pr
(
∀i : si = siM , ω = H

)
× CSMH

+ Pr (∃i : si = sL, ω = L)× CSL + Pr
(
∀i : si = siM , ω = L

)
× CSML

Thus, CS can be calculated as

CS =
1− (γ̂n)

n

2
× (CSH + CSL) +

(γ̂n)
n

2
× (CSMH + CSML)
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From the expression of the consumer surplus at t = 1, we further have:

CS (α̂n, n) =
n2

8b(n+ 1)2

(
4
(
Ā−MC

)2
+ (1− (γ̂n)

n) (AH −AL)
2
)
.

The derivation concludes.

A.7 Proof of Lemma 3

Proof. (i) Total welfare. Based on the expression for W (α̂n, n) in Equation (14), we know that

dW (α̂n, n)

dn
=

∂W (α̂n, n)

∂n
+

∂W (α̂n, n)

∂α̂n

∂α̂n

∂n

First, the partial derivative of W (α̂n, n) with respect to n can be calculated as

∂W (α̂n, n)

∂n
=

n(n+ 2) (AH −AL)
2 (γ̂n)

n ln(1/γ̂n)

8b(n+ 1)2

+
1

4b(n+ 1)3

(
4
(
Ā−MC

)2
+ (1− (γ̂n)

n) (AH −AL)
2
)

Second, we calculate the partial derivative of W (α̂n, n) with respect to α̂n as follows:

∂W (α̂n, n)

∂α̂n
=

(γ̂n)
n−1n2(n+ 2)(2θ − 1) (AH −AL)

2

8b(n+ 1)2
.

Using Equations (A.4) and the two partial derivatives above, we get:

dW (α̂n, n)

dn
=

(AH −AL)
2

8b(n+ 1)3

2
(
4
(
Ā−MC

)2
+ (AH −AL)

2
)

(AH −AL)
2 − g1 (α̂n, n)


Therefore, dW (α̂n,n)

dn < 0 holds if and only if: g1 (α̂n, n) >
8(Ā−MC)

2

(AH−AL)
2 + 2.

(ii) Consumer surplus. Obviously, CS (α̂n, n) =
n

n+2W (α̂n, n). Thus, the total derivative of

CS (α̂n, n) with respect to n can be written as follows:

dCS (α̂n, n)

dn
=

n

n+ 2
× dW (α̂n, n)

dn
+

2

(n+ 2)2
×W (α̂n, n)

Recall that W (α̂n, n) =
n(n+2)
8b(n+1)2

{
4
(
Ā−MC

)2
+ (1− (γ̂n)

n) (AH −AL)
2
}
and

dW (α̂n,n)
dn = (AH−AL)

2

8b(n+1)3
(G1 − g1 (α̂n, n)). Then, we can calculate dCS (α̂n, n) /dn as follows:

dCS (α̂n, n)

dn
=

n (AH −AL)
2

8b(n+ 1)3
(G1 − g2 (α̂n, n))

Thus, dCS(α̂n,n)
dn < 0 holds if and only if g2 (α̂n, n) > G1 is true. The proof concludes.
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A.8 Proof of Proposition 3

Proof. The idea is to construct a set U of the information production cost such that for any c ∈ U ,

we have: (i) α̂m = 1, α̂n = 0; (ii) n > m; and (iii) W (α̂m,m) > W (α̂n, n). It suffices to show

that competition can decrease total welfare through informational feedback when U ̸= ∅, because

whenever information production is fixed, an increase in the number of firms always improves total

welfare in Cournot competition.

Now, we come to construct U . First, given condition (i),

W (α̂m,m)

W (α̂n, n)
=

(
1− 1

(m+1)2

)
∗ (1 + µ ∗ (1− (2− 2θ)m))(
1− 1

(n+1)2

)
Thus, W (α̂m,m) > W (α̂n, n) holds whenever Φ(m) ≥ 1 is true, since the denominator is always

smaller than m for any n ∈ N.

Second, since Φ(m) is continuous and strictly increasing inm and that liml→∞Φ(m) = (1+µ) >

1, there exists some m0 sufficiently large such that Φ(m) ≥ 1 for all m ≥ m0. Fix any m such that

Φ(m) ≥ 1, and we can define cm by Equation (10).

Third, we can use the floor function [x] = {z ∈ Z : z ≤ x} to define:

N(m) =
(m+ 1)2

(2− 2θ) (2 + (m− 1)(2− 2θ)m−1)

By construction, we have cm > c̄N . Therefore, we can define U = [c̄n, cm) for any n ≥ N because c̄n

is strictly decreasing in n. By construction, U = [c̄n, cm) is the desired set that satifies conditions

(i)-(iii). The proof concludes.

A.9 Proof of Proposition 4

Proof. We prove this result for all parameters one by one.

Case (i): Information production cost c. First, when c = 0, α̂n = 1 for all n ∈ N.

Therefore, n∗ → ∞. Second, when c > c̄1, then α̂n = 0, and thus n∗ → ∞. Then, the non-

monotonicity of n∗(c) follows from Corollary A.1 below.

Corollary A.1. Consider n1 such that Φ(n1) ≥ 1 and n2 ≥ N(n1). Then:

(1) When c < cn2
or c > c̄n1, W (α̂n2 , n2) > W (α̂n1 , n1); and

(2) When c̄n2 < c < cn1
, W (α̂n2 , n2) < W (α̂n1 , n1).

Note that Corollary A.1 follows directly from Proposition 3.

Case (ii): Price sensitivity b. First, when b → ∞, we have Π(α) → 0, which implies that

α̂n = 0 for all n ∈ N and thus n∗ → ∞. Second, when b → 0, then α̂n = 1, and thus n∗ → ∞.

Then, the non-monotonicity of n∗(b) follows from Corollary A.1. To see it, select positive integers

n1 and n2 such that: Φ(n1) ≥ 1 and n2 ≥ N(n1). By Corollary A.1, n∗ < n2 when c̄n2 < c < cn1
,

which translates into:

(2θ − 1)(AH −AL)(Ā−MC)

2(n2 + 1)c
< b <

(2θ − 1)(1− θ)(2 + (n1 − 1)(2− 2θ)n1−1)(AH −AL)(Ā−MC)

(n1 + 1)2c
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Therefore, n∗ is non-monotonic in b.

Case (iii): Market prospect in good state AH . First, when AH → ∞, we have Π(α) → ∞,

which implies that α̂n = 1 for all n ∈ N and thus n∗ → ∞. Second, when (AH − AL) → 0, then

α̂n = 0, and thus n∗ → ∞. Then, the non-monotonicity of n∗ follows from Corollary A.1. To see

it, select positive integers n1 and n2 such that: Φ(n1) ≥ 1 and n2 ≥ N(n1). By Corollary A.1,

n∗ < n2 when c̄n2 < c < cn1
, which translates into:

AL +
2(n2 + 1)bc

(2θ − 1)(Ā−MC)
> AH > AL +

(n1 + 1)2bc

(2θ − 1)(1− θ)(2 + (n1 − 1)(2− 2θ)n1−1)(Ā−MC)

Thus, n∗ < ∞ can be finite. Therefore, n∗ is non-monotonic in (AH−AL). The proof concludes.

A.10 Proof of Lemma 4

Proof. First, note that by the assumed condition AL = MC, 4(Ā −MC)2 = (AH − AL)
2. Thus,

W (α̂1, 1) > W (α̂2, 2) reduces to:

3

32
(2− γ̂1) >

1

9
(2− (γ̂2)

2)

Second, when c ≥ (2θ−1)(AH−AL)
2

12b , by Equation (9), we have: α̂2 = 0 and thus γ̂2 = 1. This

further implies that W (α̂1, 1) > W (α̂2, 2) if and only if γ̂1 <
22
27 .

Finally, note that γ̂1 is governed by Equation (8). Simple algebra yields the bound c ≤ 11
108κ.

The other condition c < (1−θ)(2−θ)κ
9 follows from the definition of c for n = 1 and n = 2. Indeed, if

c < min{c1, c2}, then γ̂1 = γ̂2 = 1, and thus W (α̂1, 1) ≤ W (α̂2, 2). The proof concludes.
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Online Appendix

B Extended Discussions

B.1 Impacts of feedback effects from stock market: an alterative

scenario

Under extreme parameter values, where low market uncertainty reduces the informational value

of managerial learning, the stock market feedback effect may not overturn the positive relation-

ship between competition and total welfare. Nonetheless, it can significantly shape the efficiency

implications of firm competition, making it a crucial factor in regulating horizontal mergers.

Figure 11: Small Market Uncertainty (AL = 25)

Notes: This figure estimates the total welfare with and without feedback effects, as well as η =
W (α̂n,n)−W (α̂n−1,n−1)

W (0,n)−W (0,n−1)
− 1. A negative value of η indicates that the welfare effect of a horizontal merger

will be overestimated if the feedback effect is ignored. A positive value of η then suggests that the
feedback effect augments the welfare effect of a horizontal merger.

Figure 12: Small Market Uncertainty (AH = 15)
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Compared to the baseline model, Figures 11 and 12 adjust the parameter values of AL from 10

to 25 and AH from 30 to 15, respectively, while keeping all other parameters unchanged. These

modifications are quite extreme, reducing the ratio AH−AL
MC by 75%, from 20

3 to 5
3 . Under these

two sets of parameter configurations, the feedback effects are insufficient to reverse the positive

relationship between firm competition and total welfare. Nevertheless, the feedback effect continues

to exert a significant influence on the efficiency implications of competition. Specifically, when the

intensity of firm competition varies, the welfare change without considering feedback effects can be

substantially smaller — by as much as 80%.

B.2 An Extended Discussion for Section 4.4

Price sensitivity b. Figure 13 depicts the optimal market structure n∗/(n∗+1) and the corre-

sponding total welfare W (n∗) under the optimal market structure n∗. When b is high, the market

price is very sensitive to the quantity of production, reducing profits for the firms and thus dis-

couraging the production of information. Therefore, the information production gap disappears

when we vary n, leading to a dominant role of market power concentration. Similarly, when b is

low, the market price is insensitive, increasing profits for all firms and thus enhancing information

production. Again, the information production gap disappears when we vary n, and the market

concentration channel becomes dominant. For an intermediate level of price sensitivity b, the infor-

mation production gap can be relatively large when changing the number of firms in the market,

and the information production channel can dominate that of market concentration. This pattern

is illustrated in Figure 13a. However, note that a decrease in b always improves total welfare, be-

cause it directly increases firms’ profits and consumer welfare and indirectly improves total welfare

by enhancing information production.

(a) Optimal Market Structure n∗ (b) Total Welfare W (n∗)

Figure 13: Price Sensitivity b

Parameters: θ = 0.75, c = 1.5, MC = 3, AH = 30, AL = 10.

Market prospect parameters AH. Figure 14 depicts n∗ andW (n∗) when we vary the market

prospect AH in the good state ω = H. Specifically, when AH increases from zero to ∞, the optimal

market structure n∗ first decreases and then increases. Similar to other parameters, the total

welfare under the optimal market structure always increases in AH . Unlike other parameters, AH

affects the equilibrium through two forces, including market uncertainty (AH − AL) and average
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profitability. These two forces can both increase information production (see, e.g., Equation (8)).

However, their impacts on the optimal market structure can diverge, as illustrated in the discussion

below, i.e., the negative relationship between competition and total welfare is more likely to occur

when average profitability is relatively small (but not too tiny, otherwise the information production

gap disappears) or the uncertainty is relatively large (but not too large). In other words, an increase

in average profitability weakens, while an increase in market uncertainty reinforces the importance

of the information production channel in the negative relationship between competition and total

welfare.

(a) Optimal Market Structure n∗ (b) Total Welfare W (n∗)

Figure 14: Market Prospect Paramter AH

Parameters: θ = 0.75, b = 1.5, c = 1.5, MC = 3, AL = 10.

B.3 Calibration Based on US market data

This section provides a detailed explanation of the process used to estimate model parameters

based on US market data. Before introducing the specific estimation procedure, we first clarify the

parameters required to compute the impact of feedback effects, denoted as η.

Substituting the expression for W (α̂n, n) into Equation (19) and simplifying, we obtain:

η =
TW (α̂n, n)− TW (α̂n−1, n− 1)

TW (0, n)− TW (0, n− 1)
− 1 (B.1)

where

TW (α̂n, n) =
n(n+ 2)

8(n+ 1)2

((
AH

MC
+

AL

MC
− 2

)2

+ (1− γ̂nn)

(
AH

MC
− AL

MC

)2
)
.

Furthermore, using the equilibrium condition Π (α̂n) = c, we derive:

γn(2θ − 1)
(
2 + (n− 1)γn−1

n

) (
AH
MC + AL

MC − 2
)(

AH
MC − AL

MC

)
4(n+ 1)2

=
b ∗ c
MC2

. (B.2)

From Equations (B.1) and (B.2), we need to estimate the parameters n and θ, as well as the

52



three ratios AH
MC ,

AL
MC , and

bc
MC2 , to compute η. Without loss of generality, we assume b = MC = 1.21

Additionally, since the information precision parameter θ is difficult to estimate from real-world

data, we rely on the restriction θ ∈ (0.5, 1) and a reasonable compromise is to set θ = 0.75.

Next, we proceed with estimating the remaining four parameters: n,AH , AL, and c. Specifically,

we used US industry data to illustrate the parameter estimation process, which is similar for

industry-specific estimations. The required data includes firm financial data from Compustat (1950–

2023), analyst forecasts from Zacks Investment Research Database (2000–2023), and PIN data from

Stephen Brown’s website (1993–2010). The sample period for parameter estimation is 2000–2010.

Following Gu (2016) and Hou and Robinson (2006), industries are classified using three-digit SIC

codes from CRSP. Financial and utility firms, as well as industries with negative gross margins,

are excluded to align with the Cournot model. Continuous variables are winsorized at the 1st and

99th percentiles to reduce extreme value effects.

First, we estimate competition intensity n using the Herfindahl-Hirschman Index (HHI).

Following Gu (2016), we can define:

HHIjt =

Nj∑
i=1

s2ijt,

where sij is firm i’s market share in industry j in year t, and Nj is the number of firms. Market share

is computed as net sales (Compustat SALE ) divided by total industry sales. The sample mean of

US industry HHI is 0.361. In the Cournot model, with n homogeneous firms, HHI =
∑n

i=1
1
n2 = 1

n .

Thus, we estimate: n = 1
0.361 ≈ 3.

Second, we will estimate AH and AL. Since these parameters are not directly convenient to

estimate, we instead estimate the average profitability Ā−MC and market uncertainty AH −AL.

First, we use the gross margin GMit to estimate the average profitability Ā − MC. The gross

margin GMit for each firm i in year t is calculated as one minus the cost of goods sold scaled by

sales. From this, the sample mean of the gross margin for U.S. firms is calculated to be 0.236. In

the Cournot model, the average gross margin (GM) can be expressed as:

GM =
P̄ −MC

P̄
=

Ā− bnqM −MC

Ā− bnqM
=

Ā−MC

Ā+ nMC
.

Using this, along with MC = 1 and n = 3, we can estimate Ā−MC = 1.236.

Third, we estimate market uncertainty AH − AL using analyst forecast errors, as they reflect

both public market information and managerial insights, with higher uncertainty leading to larger

errors. The mean absolute percentage error (MAPE) is calculated as:

MAPE =
1

NT

N∑
i=1

T∑
t=1

∣∣∣∣SalesFit − SalesAit

SalesAit

∣∣∣∣× 100%,

where i is the firm index, t is the year index, N is the number of firms, T is the number of years,

SalesAit is actual sales in year t, and SalesFit is the median analyst forecast for year t in year

21Note that in Equation (B.2), the ratio b∗c
MC2 , rather than b alone, enters the equilibrium condition and

is related to the probability of misallocation in equilibrium. In calibration, we directly estimate the size of
informed speculators α and the probability of misallocation γ.
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t − 1 (Polk and Sapienza, 2008). The MAPE is 0.292. Since MAPE measures relative market

uncertainty, we compare it to the Coefficient of Variation (CV) of A:

CV =

√
Pr(ω = H)×

(
AH − Ā

)2
+ Pr(ω = L)×

(
AL − Ā

)2
Ā

=
AH −AL

2Ā
.

Given Ā−MC = 1.236, we estimate AH −AL = 1.306, yielding AH = 2.889 and AL = 1.583.

Fourth, we estimate the information cost c using sample data of PIN (Probability of Informed

Trading, see Easley et al. (1996)). Since PIN directly estimates the probability of informed trading

(Easley et al., 1996), its sample mean provides a reasonable estimate of α̂ at equilibrium, allowing

us to estimate c. With a full-sample mean of PIN equal to 0.233, we substitute α̂ = 0.233 and the

other estimated parameters into equation (B.2), yielding c = 0.079. A similar approach allows for

parameter estimation across industries.

In addition, we use parameters calibrated from US market data to redraw Figures 3-8.

Figure 15: Production Competition and Information Production (Calibrated Data)

Figure 16: Competition, Total Welfare and Consumer Welfare (Calibrated Data)
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Figure 17: Optimal Market Structure (Calibrated Data)

Figure 18: Average Profitability (Calibrated Data)

Figure 19: Market Uncertainty (Calibrated Data)
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B.4 Equilibrium Analysis in Section 5.1

This section analyzes the equilibrium for the cross-asset trading setup in Section 5.1. We

first solve the equilibrium, taking as given the measures of informed speculators α, which is then

determined by investigating the incentive for information acquisition. Analogous to Lemma 1, given

α, the stock price si(fi) is determined as:

si (fi) =


sH if fi ∈ (γLSi ,∞);

siM if fi ∈ [−γLSi , γLSi ];

sL if fi ∈ (−∞,−γLSi ).

where sH = (AH−MC)2

(n+1)2b
, siM = 1

4(n+1)2b

(
2 (AH −MC)2 + 2 (AL −MC)2 − βLS

i (AH −AL)
2
)
, sL =

(AL−MC)2

(n+1)2b
, γLSi = 1− (2θ − 1)(αL + αi,S) and βLS

i =
∏

j ̸=i γ
LS
i .

Furthermore, the ith firm’s optimal production strategy, conditional on the stock prices ob-

served, is given by:

q∗i (s) =


qH if ∃j ∈ {1, . . . , n} : sj = sH ;

qM if ∀j ∈ {1, . . . , n} : sj = sjM ;

qL if ∃j ∈ {1, . . . , n} : sj = sL.

where qH = AH−MC
(n+1)b , Ā = 1

2 (AH +AL) , qM = Ā−MC
(n+1)b , and qL = AL−MC

(n+1)b .

Next, we endogenize the measure of informed traders α. Specifically, for an informed L-trader

k with a private signal mk, the optimal trading strategy is to hold yjk = +1 (yjk = −1) share of each

firm j ∈ {1, . . . , n} when mk = H (mk = L), leading to an expected trading profit given by:

ΠL(α) =

(
Ā−MC

)
(AH −AL) (2θ − 1)

∑n
j=1 γ

LS
j

(
2 + (n− 1)βLS

j

)
2b(n+ 1)2

Similarly, for an informed S-trader k with a private signal mi
k, the optimal trading strategy is

to buy xik = +1 shares of the ith stock when mi
k = H, and sell xik = −1 shares of the ith stock

when mi
k = L. This leads to an expected trading profit:

Πi
S(α) =

(
Ā−MC

)
(AH −AL) (2θ − 1)γLSi

(
2 + (n− 1)βLS

i

)
2b(n+ 1)2

Since all firms in the Cournot competition are identical, we can focus on the symmetric equilib-

rium in which αi,S = αS . Then, with information acquisition, the expected profits for the L- and

S-traders can be further written as: ΠL(α) = nΠS(α) and

ΠS(α) = ΠS(αL, αS) =

(
Ā−MC

)
(AH −AL) (2θ − 1)γLS

(
2 + (n− 1)(γLS)n−1

)
2b(n+ 1)2

(B.3)

where γLS = 1− (2θ − 1)(αL + αS).

By comparing ΠL(α) and ΠS(α), we can observe that L-traders have a stronger incentive to

acquire information than S-traders, given that cL ≤ cS .This further implies: (1) if αS > 0, then
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αL = λ; and (2) if αL < λ, then αS = 0. Using this property, we can derive the optimal strategies

for information production as follows.

Lemma B.1 (Information Production). The equilibrium intensity of information production (α̃L, α̃S)

satisfies the following:

(i) when cL ≥ ΠL(0, 0), then α̃L = α̃S = 0;

(ii) when ΠL(λ, 0) < cL < ΠL(0, 0), then α̃S = 0 and α̃L ∈ (0, λ), where ΠL(α̃L, 0) = cL;

(iii) when cL < ΠL(λ, 0) and cS ≥ ΠS(λ, 0), then α̃L = λ and α̃S = 0;

(iv) when cL < ΠL(λ, 0) and ΠS(λ, 1 − λ) < cS < ΠS(λ, 0), then α̃L = λ and α̃S ∈ (0, 1 − λ),

where ΠS(λ, α̃S) = cS; and

(v) when cL < ΠL(λ, 0) and cS ≤ ΠS(λ, 1− λ), then α̃L = λ and α̃S = 1− λ.

Define α̃n := α̃(n). Finally, following the derivation of Equation (14), we can compute the

expected total welfare W̃ (α̃n, n) as follows:

W̃ (α̃n, n) =
n(n+ 2)

8b(n+ 1)2

(
4
(
Ā−MC

)2
+
(
1− (γ̃LS)n

)
(AH −AL)

2
)

(B.4)

where γ̃LS = 1− (α̃L + α̃S)× (2θ − 1).

Furthermore, define γS = 1− (2θ − 1) (λ+ α̃S), γL = 1− α̃L(2θ − 1),

gS (α̃S , n) = 2γnS +
n(n+ 2)γnS

2 + n(n− 1)γn−1
S

(
4n+ n(n− 3)γn−1

S − 2(n+ 1) ln
1

γS

)
and

gL (α̃L, n) =
(γL)

n ×
(
2n(n− 1)(n+ 2) + 4− 3n2(n+ 1)γn−1

L − 2n(n+ 1)(n+ 2) ln 1
γL

)
2 + n(n− 1)γn−1

L

With the aid of Equation (B.4), we can check the relationship between competition and total

welfare when an interior solution arises for information production.

Lemma B.2 (Competition and Welfare with Cross-Asset Trading). Product competition decreases

total welfare W̃ (α̃L, α̃S , n), i.e.,
dW̃ (α̃L,α̃S ,n)

dn < 0, when:

(i) gS (α̃S , n) > G1(AH , AL,MC) in Case 1 such that α̃L = λ; and

(ii) gL (α̃L, n) > G1(AH , AL,MC) in Case 2 so that α̃S = 0.

We make two comments. First, Lemma B.2 verifies the validity of our key result on the non-

monotonic relationship between competition and total welfare in the presence of L-traders. The

numerical insights are similar and are shown in Appendix B.4.

Second, the incentive for information production can increase with the number of firms for

L-traders (i.e., dα̃L
dn > 0 for a certain range of n when α̃S = 0), which differs significantly from the

case for S-traders when λ = 0 (i.e., dα̃S
dn < 0 by Proposition 2). This complexity is illustrated in

Figure 10. In particular, when we move from a monopoly (n = 1) to a duopoly (n = 2), the size of

the informed L-traders α̃L first increases and then decreases when n increases. To understand this
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non-monotonicity, we plug in α̃S = 0 and use Equation (B.3) to obtain:

ΠL(α) = nΠS(αL, αS) =
nγ̃
(
Ā−MC

)
(AH −AL) (2θ − 1)

(
2 + (n− 1)γ̃n−1

)
2b(n+ 1)2

where γ̃ = 1− (2θ − 1)α̃L. We can further compute:

∂ΠL

∂n
=

(2θ − 1) (AH −AL)
(
Ā−MC

)
2b(n+ 1)3

×
{
γ̃n(3n− 1)− 2γ̃(n− 1)−

(
log

1

γ̃

)
γ̃nn(n− 1)(n+ 1)

}
Therefore, it is possible that ∂ΠL

∂n > 0. For example, when αL is sufficiently small,

∂ΠL

∂n
=

(2θ − 1) (AH −AL)
(
Ā−MC

)
2b(n+ 1)2

+
n(n− 1)α̃L

(n+ 1)2
×O(1) > 0

Note that ∂ΠL
∂n > 0 implies that increased competition in the product market can strengthen the

incentive for L-traders to acquire and trade on private information. Intuitively, as shown in Vives

(1985), the profit of firms converges to zero at a speed of 1/n. When multiplied by the number of

firms n, the trading profits for L-traders can be non-monotonicity in n. We term this the ”trading

opportunity effect” in cross-asset trading.

Numerical analysis. Here, we use numerical methods to verify that the basic insights still

hold when there are both L-traders and S-traders in the stock market. Again, let ∆W̃n denote

the incremental change in total welfare when the number of firms increases from (n− 1) to n, i.e.,

∆W̃n = W̃ (α̃n, n)− W̃ (α̃n−1, n− 1).

Figure 20: Average Profitability, Information Quality and Welfare.

Parameters: AH −AL = 10, b = 1.5, θ = 0.75, n = 5,MC = 3, cL = cS = 1.5, λ = 0.2.

Remark: (Case 1) the intensity of information production for L-traders satisfies: α̃L = λ.

First, Figure 20 illustrates how average profitability
(
Ā−MC

)
affects information production

α̃S and total welfare ∆W̃n when all L-traders choose to acquire information. Specifically, similar
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Figure 21: Uncertainty, Information Quality and Welfare.

Parameters: Ā = 15, b = 1.5, θ = 0.75, n = 5,MC = 3, cL = cS = 1.5, λ = 0.2.

Remark: (Case 1) the intensity of information production for L-traders satisfies: α̃L = λ.

Figure 22: Average Profitability, Information Quality and Welfare.

Parameters: AH −AL = 10, b = 2.5, θ = 0.75, n = 14,MC = 6.5, cL = cS = 1.5, λ = 0.8.

Remark: (Case 2) the intensity of information production for S-traders satisfies: α̃S = 0.
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Figure 23: Uncertainty, Information Quality and Welfare.

Parameters: AH = 20, AL = 10, b = 2.5, θ = 0.75, n = 14,MC = 6.5, cL = cS = 1.5, λ = 0.8.

Remark: (Case 2) the intensity of information production for S-traders satisfies: α̃S = 0.

to Figure 7, it delivers three messages, including: (1) the intensity of information production

α̃n decreases in the number of firms n; (2) both α̃n and α̃n−1 increase the average profitability(
Ā−MC

)
; and (3) the welfare gain ∆W̃n is smaller for a lower average profitability, which can

even be negative when the average profitability is sufficiently low.

Furthermore, Figure 21 shows the impact of uncertainty, measured by (AH −AL), on infor-

mation production and total welfare. Specifically, it delivers three messages, including: (1) the

intensity of information production α̃n decreases in the number of firms n; (2) both α̃n and α̃n−1

increase in market uncertainty (AH −AL); and (3) the incremental welfare change can be negative

when market uncertainty (AH −AL) is high. Finally, a similar pattern ensues when all S-traders

abstain from acquiring information and only a fraction of L-traders choose to produce information.

B.5 Equilibrium Analysis in Section 5.2

Equilibrium analysis. Recall that we let αL and αi,S denote the measure of informed L-traders

and that of informed S-traders for the ith firm, and the size of L-traders is λ = 0. We first solve

the equilibrium for a fixed α. Specifically:

si (Ω) =


sH if ∃j : fj ∈ (γLSj ,∞);

sM if ∀j : fj ∈ [−γLSj , γLSj ];

sL if ∃j : fj ∈ (−∞,−γLSj ).

(B.5)

where sH = (AH−MC)2

(n+1)2b
, sM =

(Ā−MC)
2

(n+1)2b
, sL = (AL−MC)2

(n+1)2b
, and γLSi = 1− (2θ − 1)(αL + αi,S).

Furthermore, the ith firm optimally chooses production based on observed stock prices:

q∗i (s) =


qH if ∃j : sj = sH ;

qM if ∀j : sj = sM ;

qL if ∃j : sj = sL.
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where qH = AH−MC
(n+1)b , qM = Ā−MC

(n+1)b and qL = AL−MC
(n+1)b .

Again, for an informed L-trader k with a private signal mk, the optimal trading strategy is to

buy yjk = +1 (yjk = −1) share of each firm j when mk = H (mk = L), leading to an expected

trading profit given by:

ΠL,C(α) =
n(2θ − 1)

(
Ā−MC

)
(AH −AL)

(∏n
j=1 γ

LS
j

)
2b(n+ 1)

Similarly, for an informed S-trader k with a private signal mi
k, the optimal trading strategy is

to buy xik = +1 shares of the ith stock when mi
k = H, and sell xik = −1 shares of the ith stock

when mi
k = L, leading to an expected trading profit of:

ΠS,C(α) =
(2θ − 1)

(
Ā−MC

)
(AH −AL)

(∏n
j=1 γ

LS
j

)
2b(n+ 1)

Here, the symbol “C” in the subscript means “cross-asset learning”.

By focusing on the symmetric equilibrium (i.e., αi,S = αS), the expected profits for the L- and

S-traders can be further written as: ΠL(α) = nΠS(α) and

ΠS,C(α) =
(2θ − 1)

(
Ā−MC

)
(AH −AL) (γ

LS)n

2b(n+ 1)
(B.6)

where γLS = 1− (2θ − 1)× (αL + αS).

Now, we turn to equilibrium information production. Define

ν =
1

(2θ − 1)
− 1

(2θ − 1)

(
2bcL(n+ 1)

n(2θ − 1)
(
Ā−MC

)
(AH −AL)

)1/n

, and

ξ =
1

(2θ − 1)
− 1

(2θ − 1)

(
2bcS(n+ 1)

n(2θ − 1)
(
Ā−MC

)
(AH −AL)

)1/n

− λ

Lemma B.3 (Information Production). The equilibrium intensity of information production (α̃L,C , α̃S,C)

satisfies the following:

(i) when cL ≥ ΠL,C(0, 0), then α̃L,C = α̃S,C = 0;

(ii) when ΠL,C(λ, 0) < cL < ΠL,C(0, 0), then α̃S,C = 0 and α̃L,C = ν ∈ (0, λ);

(iii) when cL < ΠL,C(λ, 0) and cS ≥ ΠS,C(λ, 0), then α̃L,C = λ and α̃S,C = 0;

(iv) when cL < ΠL,C(λ, 0) and ΠS,C(λ, 1 − λ) < cS < ΠS,C(λ, 0), then α̃L,C = λ and α̃S,C =

ξ ∈ (0, 1− λ); and

(v) when cL < ΠL,C(λ, 0) and cS ≤ ΠS,C(λ, 1− λ), then α̃L,C = λ and α̃S,C = 1− λ.

Define α̃n := α̃(n). Finally, following the derivation of Equation (14), we can compute the

expected total welfare W̃LS (α̃n, n) as follows:

W̃LS (α̃n, n) =
n(n+ 2)

8b(n+ 1)2

(
4
(
Ā−MC

)2
+
(
1− (γ̃LS)n

)
(AH −AL)

2
)

(B.7)

where γ̃LS = 1− (2θ − 1)× (α̃L + α̃S).
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Recall that γS = 1− (2θ − 1) (λ+ α̃S), γL = 1− α̃L(2θ − 1). Define

gS,C(γS , n) = (γS)
n(2 + n(n+ 1)(n+ 2)).

Lemma B.4 (Competition and Welfare with Cross-Asset Learning).

(i) Case 1: α̃L,C = λ. Then, the total welfare decreases in the number of firms n (i.e.,
dW̃LS(α̃n,n)

dn < 0) if and only if gS,C (γS , n) > G1(AH , AL,MC); and

(ii) Case 2: α̃S,C = 0. Then, the total welfare increases strictly in the number of firms n, i.e.,
dW̃LS(α̃n,n)

dn > 0.

Lemma B.4 requires several additional clarifications, given that market makers can observe the

flow of orders in all stocks. First, when there are only S-traders in the stock market (i.e., λ = 0

and thus α̃L,C = 0 = λ always holds), the nonmonotonic relationship between competition and

total welfare still holds. Second, the non-monotonicity also holds when the cost of information

production is small such that α̃L,C = λ. Note that L-traders have a stronger incentive to acquire

information, compared to S-traders. Third, when there are only L-traders (i.e., λ = 1 and thus

α̃S,C = 0 always holds), the total welfare increases strictly in the number of firms n. In other

words, the non-monotonic relationship between competition and total welfare holds when we allow

cross-asset trading by L-traders or cross-asset learning by market makers, but not both. Intuitively,

there are two economic forces behind this. On the one hand, as discussed in Section 5.1, intensified

competition can improve trading profits for L-traders by granting them more trading opportunities.

On the other hand, cross-asset learning provides market makers with more information, decreasing

speculators’ trading profits, and information production in equilibrium. In summary, both the

trading opportunity effect and the cross-asset learning effect reduce the impact of the information

production channel. A more detailed discussion about the divergent impact of cross-asset learning

on L-traders and S-traders can be found in online Appendix B.5.

We first illustrate how competition shapes information production and total welfare when mar-

ket makers can observe the order flow of all stocks.

(a) Information Production (b) Total Welfare

Figure 24: Competition, Information Production and Total Welfare

Parameters: λ = 0.2, θ = 0.75, b = 1.5, AH = 20, AL = 10, MC = 8, and cL = cS = 1.5.

Numerical analysis. With intensified Cournot competition (n ↑), the incentive to acquire

information weakly decreases. This is illustrated in Figure 24a. First, when n ≤ 4, an increase
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in n reduces the measure of informed S-traders, who have a relatively smaller incentive to acquire

information. Second, when 4 < n ≤ 18, S-traders quit from acquiring information and trading on

private information, while all L-traders choose to acquire information. Third, when n ≥ 18, an

increase in n further reduces the incentive for L-traders to acquire information.

Correspondingly, Figure 24b depicts total welfare when the number of firms n increases. When

n ≤ 4, total welfare first increases and then decreases and reaches a local minimum when all S-

traders abstain from information production. However, when n ≥ 4, total welfare increases strictly

in the number of firms, indicating a dominant role of the market concentration channel.

Understanding the impact of cross-asset learning. By Lemma B.4, cross-asset learning

affects L-traders differently from S-traders. Here, we show that this complexity is primarily caused

by the combination of the trading opportunity effect and the cross-asset learning effect.

(i) Cross-asset learning effect.

Specifically, with cross-asset learning, market makers can observe the order flow of all stocks,

enabling more efficient pricing against informed speculators. Thus, trading profits decrease for both

L-traders and S-traders and are lower than those without cross-asset learning. Indeed, given γ̃LS

(or equivalently, α̃L,C + α̃S,C ), we have:

ΠL,C

ΠL
=

ΠS,C

ΠS
= fC(n) (B.8)

where fC(n) =
(n+1)

2(γ̃LS)1−n+(n−1)
. Obviously, fC(n) ∈ (0, 1) and f ′

C(n) < 0. Therefore, the trading

profits of an informed L-trader and an informed S-trader will shrink proportionally by a ratio

of fC(n) when market makers can observe the order flow of all stocks, and this effect is more

pronounced when n is large.

(ii) Trading opportunity effect.

This effect arises from the opportunity to access all stock, and thus only exists for L-traders.

Unlike an S-trader with small trading opportunities, an L-trader can earn a higher trading profit by

acquiring costly information, i.e., ΠL = nΠS and ΠL,C = nΠS,C . Therefore, the expected trading

profit of an L-trader can increase with n, especially when n is small. For example, we can verify

that ∂ΠL
∂n > 0 for n = 1, which differs from the case with an S-trader whose expected trading profit

always decreases in n. However, note that ∂ΠL
∂n < 0 when n is large enough. Figure 25 illustrates the

pattern of trading profits with (blue dashed line) and without (red solid line) cross-asset learning

by market makers.

We now examine how cross-asset learning affects the incentive for information production. We

first consider S-traders, whose expected trading profits ΠS strictly decrease in n and are further

reduced by cross-asset learning (i.e.,
dΠS,C

dn < 0). Note that ΠS = ΠS,C when n = 1 or n → ∞.

Then, one would expect that when n is relatively small, ΠS,C decreases relatively faster than ΠS,C

as n increases. This is illustrated in panel (a) of Figure 25. Therefore, with cross-asset learning, the

expected trading profit of an informed S-trader exhibits a higher level of sensitivity in the number

of firms (n), which implies that intensified market competition can further reduce the incentive for

S-traders to trade on proprietary information compared to the case without cross-asset learning.

63



Figure 25: Trading profits with/witout cross-asset learning

Parameters: θ = 0.75, b = 2.5, AH = 20, AL = 10, MC = 6.5, and α̃L,C + α̃S,C = 0.1.

In other words, it reinforces the informational feedback channel, leading to a stronger (negative)

effect of competition on real efficiency.

Next, we consider L-traders, whose expected trading profits ΠL are non-monotonic in n. Specif-

ically, due to the trading opportunity effect, ΠL first increases and then decreases, generating an

inverted U-shape pattern when n increases. Similarly, cross-asset learning also decreases the ex-

pected trading profit ΠL,C for L-traders and flattens the inverted U-shape pattern, as shown in

panel (b) of Figure 25. Thus, with cross-asset learning by market makers, the expected trading

profit of an informed L-trader becomes less sensitive to the number of firms (n) when n is relatively

small, leading to weaker informational feedback effects. Therefore, the non-monotonic link between

competition and total welfare fails because the trading opportunity effect and cross-asset learning

reinforce each other.

As a final remark, Figure 25 appears to indicate that the expected trading profits ΠL and ΠL,C

for L-traders are relatively more sensitive to changes in n when n is large, compared to those of

S-traders ΠS and ΠS,C . However, this does not mean that a change in n affects L-traders more

than S-traders when it comes to information production. More formally, recall that ΠL = nΠS and

ΠL,C = nΠS,C , which further implies that: ∂ΠL
∂αL

= n∂ΠS
∂αS

< 0 and
∂ΠL,C

∂αL
= n

∂ΠS,C

∂αS
< 0. It then

follows that for L-traders, we have:

dα̃L

dn
= − 1

n
∗

∂ΠL
∂n
∂ΠS
∂αS

and
dα̃L,C

dn
= − 1

n
∗

∂ΠL,C

∂n
∂ΠS,C

∂αS

In contrast, for S-traders, we have:

dα̃S

dn
= −

∂ΠS
∂n
∂ΠS
∂αS

and
dα̃S,C

dn
= −

∂ΠS,C

∂n
∂ΠS,C

∂αS

Furthermore, from ΠL = nΠS , we know that ∂ΠL
∂n = n∂ΠS

∂n +ΠS . It follows that
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dα̃L

dn
=

dα̃S

dn
− ΠS/n

∂ΠS
∂αL

>
dα̃S

dn

Since dα̃S
dn < 0, we have

∣∣∣dα̃L
dn

∣∣∣ < ∣∣∣dα̃S
dn

∣∣∣, when dα̃L
dn < 0. Similarly, with cross-asset learning, we

also have:
∣∣∣dα̃L,C

dn

∣∣∣ < ∣∣∣dα̃S,C

dn

∣∣∣, when dα̃L,C

dn < 0. Thus, intensified market competition will negatively

affect S-traders more than L-traders in terms of information production.

B.6 Formal Analysis for Section 5.3

This section provides a formal analysis for Section 5.3. Specifically, we first present a non-

monotonic welfare result and then depict the relationship between competition and total welfare

when investor welfare is included. Recall that Φ(m) is defined in Proposition 3, and define m0 =

inf{m ∈ N : Φ(m) ≥ 1}. Define c̃ = 2bc
(Ā−MC)2

.

Lemma B.5 (Informational Feedback & Over-Competition). Assume B(n) = B0 for some constant

B0. Suppose that Φ(m) − m ∗ c̃ − m > 0 for some m ≥ m0. Then, for any n ≥ N(m) > m,

W (α̂m,m) > W (α̂n, n) holds for any c ∈ [c̄n, cm) with c̄n < cm.

(a) B(n) = 1 (b) B(n) = 0.1 ∗ n

Figure 26: Competition & Total Welfare (with Investor Welfare)

Parameters: θ = 0.75, b = 1.5, AH = 30, AL = 10, MC = 3, and c = 1.5.

Figure 26 illustrates the relationship between product competition and total welfare when in-

vestor welfare is included in the calculation. Specifically, when the aggregate benefit of liquidity

trading is fixed, Figure 26a demonstrates a non-monotonic pattern between competition and total

welfare, which is similar to Figure 4. In particular, total welfare first increases and then de-

creases, and is maximized at n = 8. Similarly, Figure 26b illustrates the relationship by specifying

the aggregate benefit of liquidity trading as an increasing function of the number of stocks, i.e.,

B(n) = 0.1 ∗ n. The total welfare is also non-monotonic and becomes infinitely large due to the

unbounded return from liquidity trading.
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B.7 Skipped Proofs in the Online Appendix

B.7.1 Proof of Lemma B.1

Proof. We first state two properties: (a) We compute the following derivatives, including:

∂ΠL (αL, αS)

∂αL
= −

n (AH −AL)
(
Ā−MC

)
(2θ − 1)2

(
2 + n(n− 1)(γLS)n−1

)
2b(n+ 1)2

< 0;

∂ΠS (αL, αS)

∂αS
= −

(AH −AL)
(
Ā−MC

)
(2θ − 1)2

(
2 + n(n− 1)(γLS)n−1

)
2b(n+ 1)2

< 0.

and (b) Note that ΠL (αL, αS) = nΠS (αL, αS).

Now, we prove the lemma. First, consider cL ≥ ΠL(0, 0). Obviously, α̃L = 0. Meanwhile, since

cS ≥ cL and ΠL(0, 0) ≥ ΠS(0, 0), α̃S = 0.

Second, consider ΠL(λ, 0) < cL < ΠL(0, 0). By the derivative ∂ΠL(αL,αS)
∂αL

< 0 and continuity,

there exists a unique α̃L such that ΠL(α̃L, 0) = cL. Furthermore, given α̃L,
∂ΠS(αL,αS)

∂αS
< 0 implies

that ΠS(α̃L, 0) > ΠS(α̃L, αS) for any αS > 0. Thus, cS ≥ cL = ΠL(α̃L, 0) ≥ ΠS > ΠS(α̃L, αS) for

any αS > 0. Therefore, α̃S = 0.

Third, consider cL < ΠL(λ, 0) and cS ≥ ΠS(λ, 0). Obviously, (α̃L, α̃S) = (λ, 0). Furthermore,

this is also the unique equilibrium. If not, consider any equilibrium (α̃L, α̃S) with α̃S > 0. Note that

by property (b), we can infer: ΠL(α̃L, α̃S) > ΠS(α̃L, α̃S) ≥ cS ≥ cL, which implies that α̃L = λ,

which in turn implies that α̃S = 0.

Fourth, consider cL < ΠL(λ, 0) and ΠS(λ, 1 − λ) < cS < ΠS(λ, 0). We have shown above that

if α̃S > 0, then α̃L = λ. Given that cL < ΠL(λ, 0), we can infer that α̃L = λ. Given this and the

assumed condition ΠS(λ, 1−λ) < cS < ΠS(λ, 0), by the monotonicity and continuity of ΠS(αL, αS),

there is a unique α̃S ∈ (0, 1− λ) such that ΠS(λ, α̃S) = cS .

Fifth, consider cL < ΠL(λ, 0) and cS ≤ ΠS(λ, 1 − λ). Obviously, by the facts cS ≥ cL and

ΠL ≥ ΠS , we have: α̃L = λ and α̃S = 1− λ. The proof concludes.

B.7.2 Proof of Lemma B.2

Proof. Case 1: α̃L = λ. We can rewrite W̃ (α̃L, α̃S , n) and ΠS(α̃L, α̃S) as:

W̃ (α̃S , n) =
n(n+ 2)

8b(n+ 1)2
(
4(Ā−MC)2 + (1− γS

n)(AH −AL)
2
)
,

ΠS(α̃S , n) =
γS(2θ − 1)(AH −AL)(Ā−MC)

(
2 + (γS)

n−1(n− 1)
)

2b(n+ 1)2

where γS = 1− (λ+ α̃S)(2θ − 1).
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Then, we can calculate the following partial derivatives:

∂W̃

∂α̃S
=

n2(n+ 2)γn−1
S (2θ − 1)(AH −AL)

2

8b(n+ 1)2
,

∂W̃

∂n
=

n(n+ 2)γnS(AH −AL)
2 ln(1/γS)

8b(n+ 1)2
+

2
(
(AH −MC)2 + (AL −MC)2

)
− γnS(AH −AL)

2

4b(n+ 1)3

∂ΠS

∂α̃S
= −

(2θ − 1)2
(
(AH −MC)2 − (AL −MC)2

)
(2 + n(n− 1)γS

n−1)

4b(n+ 1)2

∂ΠS

∂n
= −

(2θ − 1)
(
(AH −MC)2 − (AL −MC)2

) (
4γS + γnS

(
n− 3− (n2 − 1) ln γS

))
4b(n+ 1)3

By the implicit function theorem, we have:

∂α̃S

∂n
= −∂ΠS/∂n

∂ΠS/α̃S
= −

γnS ×
((
4γ1−n

S + (n− 3)
)
/(n+ 1) + (n− 1) ln(1/γS)

)
(2θ − 1)

(
2 + n(n− 1)γn−1

S

)
which further implies:

dW̃ (α̃S,C , n)

dn
=

∂W̃

∂n
+

∂W̃

∂α̃S

∂α̃S

∂n
=

(AH −AL)
2 (G1 − gS (α̃S , n))

8b(n+ 1)3
,

Thus,
dW̃(α̃S,C ,n)

dn < 0 if and only if gS (α̃S , n) > G1.

Case 2: α̃S = 0. We can rewrite W̃ (α̃L, α̃S , n) and ΠL(α̃L, α̃S) as:

W̃ (α̃L, n) =
n(n+ 2)

8b(n+ 1)2
(
4(Ā−MC)2 + (1− (γL)

n)(AH −AL)
2
)
,

ΠS(α̃L, n) =
γS(2θ − 1)(AH −AL)(Ā−MC)

(
2 + (γL)

n−1(n− 1)
)

2b(n+ 1)2

where γL = 1− α̃L × (2θ − 1).

Then, we can calculate the following partial derivatives:

∂W̃

∂α̃L
=

n2(n+ 2)γn−1
L (2θ − 1)(AH −AL)

2

8b(n+ 1)2
,

∂W̃

∂n
=

n(n+ 2)γnL(AH −AL)
2 ln(1/γL)

8b(n+ 1)2
+

2
(
(AH −MC)2 + (AL −MC)2

)
− γnL(AH −AL)

2

4b(n+ 1)3

∂ΠL

∂α̃L
= −

n(2θ − 1)2
(
(AH −MC)2 − (AL −MC)2

)
(2 + n(n− 1)γL

n−1)

4b(n+ 1)2

∂ΠL

∂n
= −

(2θ − 1)
(
(AH −MC)2 − (AL −MC)2

) (
2(1− n)γL + γnL

(
(3n− 1) + n(n2 − 1) ln γL

))
4b(n+ 1)3

By the implicit function theorem, we have:

∂α̃L

∂n
= −∂ΠL/∂n

∂ΠL/α̃L
=

2γL × (1− n) + (γL)
n
(
(3n− 1)− n(n2 − 1) ln(1/γL)

)
n(n+ 1)(2θ − 1)

(
2 + n(n− 1)γn−1

L

)
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which further implies:

dW̃ (α̃L, n)

dn
=

∂W̃

∂n
+

∂W̃

∂α̃L

∂α̃L

∂n
=

n (AH −AL)
2 (G1 − gL (α̃L, n))

8bn(n+ 1)3
,

Thus, dW̃ (α̃L,n)
dn < 0 if and only if gL (α̃L, n) > G1. The proof concludes.

B.7.3 Proof of Lemma B.3

Proof. We first state two important properties: (a) ΠL,C (αL, αS) = nΠS,C (αL, αS); and (b) we

compute the following derivatives, including
∂ΠL,C(αL,αS)

∂αL,C
and

∂ΠS,C(αL,αS)
∂αS,C

. Based on the expres-

sions for trading profits of an informed L-trader and an informed S-trader, we have:

∂ΠL,C (αL, αS)

∂αL,C
= −

n2
(
γLS

)n−1
(2θ − 1)2

(
Ā−MC

)
(AH −AL)

2(n+ 1)b
< 0

∂ΠS,C (αL, αS)

∂αS,C
= −

n
(
γLS

)n−1
(2θ − 1)2

(
Ā−MC

)
(AH −AL)

2(n+ 1)b
< 0

Next, we prove the lemma. First, consider cL ≥ ΠL,C(0, 0). Obviously, α̃L,C = 0. Meanwhile,

since cS ≥ cL and ΠL,C(0, 0) = nΠS,C(0, 0), we can deduce that α̃S,C = 0.

Second, consider ΠL,C(λ, 0) < cL < ΠL,C(0, 0). By the derivative
∂ΠL,C(αL,αS)

∂αL
< 0, and

continuity, there exists a unique α̃L,C such that ΠL,C (α̃L,C , 0) = cL. By solving the equation

ΠL,C (α̃L,C , 0) = cL, we have α̃L,C = ν. Furthermore, given α̃L,C ,
∂ΠS,C(αL,αS)

∂αS
< 0 implies that

ΠS,C (α̃L,C , 0) > ΠS,C (α̃L,C , αS) for any αS > 0. Thus, cS ≥ cL = ΠL,C (α̃L,C , 0) > ΠS,C (α̃L,C , αS)

for any αS > 0. Therefore, α̃S,C = 0.

Third, consider cL ≤ ΠL,C(λ, 0) and cS ≥ ΠS,C(λ, 0). Obviously, (α̃L,C , α̃S,C) = (λ, 0). Fur-

thermore, this is also the unique equilibrium. If not, consider any equilibrium (α̃L,C , α̃S,C) with

α̃S,C > 0. Note that by property (b), we can infer: ΠL,C (α̃L,C , α̃S,C) > ΠS,C (α̃L,C , α̃S,C) ≥ cS ≥
cL, which implies that α̃L,C = λ, which in turn implies that α̃S,C = 0.

Fourth, consider cL ≤ ΠL,C(λ, 0) and ΠS,C(λ, 1− λ) < cS < ΠS,C(λ, 0). We have shown above

that if α̃S,C > 0, then α̃L,C = λ. Given that cL ≤ ΠL,C(λ, 0), we can infer that α̃L,C = λ. Given this

and the assumed condition ΠS,C(λ, 1 − λ) < cS < ΠS,C(λ, 0), by the monotonicity and continuity

of ΠS,C (α̃L,C , α̃S,C), there is a unique α̃S,C ∈ (0, 1− λ) such that ΠS,C (λ, α̃S,C) = cS . By solving

ΠS,C (λ, α̃S,C) = cS , we have α̃S,C = ξ.

Fifth, consider cL ≤ ΠL,C(λ, 0) and cS ≤ ΠS,C(λ, 1 − λ). Obviously, by the facts cS ≥ cL and

ΠL,C > ΠS,C , we have: α̃L,C = λ and α̃S,C = 1− λ. The proof concludes.

B.7.4 Proof of Lemma B.4

Proof. We first state two important properties: (a) ΠL,C (αL, αS) = nΠS,C (αL, αS); and (b) we

compute the following derivatives, including
∂ΠL,C(αL,αS)

∂αL,C
and

∂ΠS,C(αL,αS)
∂αS,C

. Based on the expres-
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sions for trading profits of an informed L-trader and an informed S-trader, we have:

∂ΠL,C (αL, αS)

∂αL,C
= −

n2
(
γLS

)n−1
(2θ − 1)2

(
Ā−MC

)
(AH −AL)

2(n+ 1)b
< 0

∂ΠS,C (αL, αS)

∂αS,C
= −

n
(
γLS

)n−1
(2θ − 1)2

(
Ā−MC

)
(AH −AL)

2(n+ 1)b
< 0

Now, we prove the lemma.

Case 1: α̃L,C = λ. We can rewrite W̃LS (α̃n, n) and ΠL,C(αn) as:

W̃LS(α̃S , n) =
n(n+ 2)

8b(n+ 1)2
(
4(Ā−MC)2 + (1− γnS)(AH −AL)

2
)
,

ΠS,C(α̃S , n) =
γnS(2θ − 1)(AH −AL)(Ā−MC)

2b(n+ 1)

where γS = 1− (λ+ α̃S)(2θ − 1).

Then, we can calculate the following partial derivatives:

∂W̃LS

∂α̃S,C
=

γn−1
S n2(n+ 2)(2θ − 1)(AH −AL)

2

8b(n+ 1)2
,

∂W̃LS

∂n
=

γnSn(n+ 2)(AH −AL)
2 ln(1/γS)

8b(n+ 1)2
+

2
(
(AH −MC)2 + (AL −MC)2

)
− γnS(AH −AL)

2

4b(n+ 1)3

∂ΠS,C

∂α̃S,C
= −

nγn−1
S

(
Ā−MC

)
(AH −AL)(2θ − 1)2

2b(n+ 1)

∂ΠS,C

∂n
= −

γnS(2θ − 1)
(
Ā−MC

)
(AH −AL) (1 + (n+ 1) (ln 1/γS))

2b(n+ 1)2

By the implicit function theorem, we have:

∂α̃S,C

∂n
= −

∂ΠS,C/∂n

∂ΠS,C/α̃S,C
= −γS (1 + ln(1/γS))

n(2θ − 1)

which further implies:

dW̃LS (α̃S,C , n)

dn
=

∂W̃LS

∂n
+

∂W̃LS

∂α̃S,C

∂α̃S,C

∂n
=

(AH −AL)
2 (G1 − gS,C (γS , n))

8b(n+ 1)3
.

Thus,
dW̃LS(α̃S,C ,n)

dn < 0 if and only if gS,C(γS , n) > G1.

Case 2: α̃S,C = 0. We can rewrite W̃LS (α̃n, n) and ΠL,C(αn) as:

W̃LS(α̃L,C , n) =
n(n+ 2)

8b(n+ 1)2
(
4(Ā−MC)2 + (1− γnL)(AH −AL)

2
)
,

ΠS,C(α̃L,C , n) =
nγnL(2θ − 1)

(
Ā−MC

)
(AH −AL)

2b(n+ 1)

where γL = 1− α̃L × (2θ − 1).
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Then, we can calculate the following partial derivatives:

∂W̃LS

∂α̃L
=

γn−1
L n2(n+ 2)(2θ − 1)(AH −AL)

2

8b(n+ 1)2
,

∂W̃LS

∂n
=

n(n+ 2)γnL(AH −AL)
2 ln(1/γL)

8b(n+ 1)2
+

2
(
(AH −MC)2 + (AL −MC)2

)
− γnL(AH −AL)

2

4b(n+ 1)3

∂ΠL,C

∂α̃L
= −

n2γn−1
L

(
Ā−MC

)
(AH −AL)(2θ − 1)2

2b(n+ 1)

∂ΠL,C

∂n
=

γnL(2θ − 1)
(
Ā−MC

)
(AH −AL) (1− n(n+ 1)ln (1/γL))

2b(n+ 1)2

By the implicit function theorem, we have:

∂α̃L,C

∂n
= −

∂ΠL,C/∂n

∂ΠL,C/∂α̃L,C
=

γL (1− n(n+ 1) ln(1/γL))

n2(n+ 1)(2θ − 1)

which further implies:

dW̃LS (α̃L,C , n)

dn
=

∂W̃LS

∂n
+

∂W̃LS

∂α̃L,C

∂α̃L,C

∂n
=

4
(
(AH −MC)2 + (AL −MC)2

)
+ nγnL(AH −AL)

2

8b(n+ 1)3

Obviously,
dW̃LS(α̃L,C ,n)

dn > 0. The proof concludes.

B.7.5 Proof of Lemma B.5

Proof. First, note that B(n) = B0 eliminates the impact of the benefits of liquidity trading and

thus we can focus on the information cost. Second, Φ(m) −m ∗ c̃ > 0 holds for some m ≥ m0 for
2b

(Ā−MC)2
sufficiently small since Φ(m) > 1 for m ≥ m0 + 1. Third, note that

W (α̂m,m)

W (α̂n, n)
=

(
1− 1

(m+1)2

)
∗ (1 + µ ∗ (1− (2− 2θ)m))−m ∗ c̃(

1− 1
(n+1)2

)
Then, the remaining proof follows from that of Proposition 3. The proof concludes.
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1 Introduction

Limit order submissions and cancellations make up a staggering 95% of trading activity in modern

markets.1 In response, exchanges and regulators have proposed measures to curb message frequency

by imposing limitations on the order to trade ratio, enforcing minimum order resting times, and

introducing message taxes or cancellation fees. Despite these initiatives, we know very little about

how liquidity providers should manage their limit orders. What is the value of a limit order? At

what price level should we submit a limit order? When should an order be canceled? How often

should an order be cancelled? How important is this option to cancel? Answering these questions is

non-trivial; the dimensionality of the problem is extremely large and decisions are path dependent.

Despite the complexity of the problem, theory has shed some light on the way traders manage

their orders. Among others, Parlour (1998), Foucault (1999), Goettler et al. (2005), Foucault et al.

(2005), Goettler et al. (2009), Rosu (2009), Ricco et al. (2020), Rosu (2020), and Bhattacharya

and Saar (2022) propose multi-period equilibrium models, which represent limit order markets as

sequential games. In these models, traders arrive sequentially and submit, or update, the optimal

order that maximizes their gains from trade. However, these models differ in the features that are

modeled. For example, some models highlight the importance of volatility (Foucault (1999)) while

others demonstrate the importance of queue size (Parlour (1998)). In some models, traders can

only submit to one price level (Parlour (1998)) while in other models, traders can submit to prices

beyond the best quotes (e.g., Goettler et al. (2005)). In Goettler et al. (2005), Foucault et al. (2005),

and Ricco et al. (2020) traders can enter the market once, while in Goettler et al. (2009), Rosu

(2009) and Bhattacharya and Saar (2022) traders can reenter the market. However, which market

features are most important to a trader’s optimal order decisions? Many of the features of these

models have not been empirically tested due to the lack of technologies available to researchers.

In this study, we uncover the most important features influencing a liquidity provider’s limit

order decisions using a novel machine learning (ML). For over 18,000 unique market states, we

compute the expected value of a resting limit order for each of these market states, conditional

1See Brogaard et al. (2019). Market orders, which have been the focus of much of the existing literature, make up
less than 5% of all activity.
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on the optimal management of the order over its life cycle. Our technique allows us to identify

important features of limit order management and in doing so, provide several stylized facts about

limit orders that is new to the literature. First, we quantify the value of a resting limit order under

a broad combination of different market conditions. This allows us to identify when it is optimal to

leave or cancel a resting limit order under different market conditions. Second, we uncover pervasive

market dynamics and show which features drive the underlying value of the limit order and how

their interactions interplay. Finally, we quantify the value of the option to cancel an order and

identify the market conditions when this option is most valuable.

To solve this problem, we cast limit order management as a sequential Markovian decision

process within a reinforcement learning (RL) framework. RL is a type of machine learning that

enables an agent to learn the optimal action, given the current environment, using feedback from

the agent’s own actions and experiences. We emphasize that our RL framework is not a conventional

theoretical model, which typically models trader behavior to arrive at equilibrium outcomes. Rather,

our RL framework imposes a structure onto the vast amount of empirical data to identify the

features of theoretical models that contribute most to the trader’s order submission decision.

In our RL framework, at short periodic time intervals, our risk neutral liquidity provider faces

the same decision: to leave or cancel their resting limit order. This decision making process repeats

until the trader’s limit order executes or is canceled. For each periodic decision, our liquidity

provider maximizes expected profit and leaves (cancels) their limit order if the order has a positive

(negative) expected value conditional on 1) the current market conditions and 2) the future optimal

management of the limit order. Thus, our framework captures the endogenous option to cancel

based on the future expected value of the order’s payoff. As a result, the limit order’s conditional

expected value at time t is a recursive estimate based on all future conditional expected values and

their corresponding likelihoods. To overcome the recursive nature of the problem, we empirically

estimate the conditional expected value via an iterative update function, known as Q-learning.

The key estimate in our liquidity provider’s decision making process is the limit order’s con-

ditional expected value. The expected value of a limit order is driven by a tradeoff between two

opposing dynamics: the order’s probability of execution, which enhances its value, and its risk of
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adverse selection, which diminishes the order’s value. We draw insights from existing theoretical

literature to identify the variables or market conditions that influence adverse selection risk or its

execution probability—thus, contributing to the limit order’s overall conditional expected value.

Parlour (1998) provides theoretical arguments that strategic traders should consider queue lengths

on both sides of the limit order book. Further, Yueshen (2021), Li et al. (2020) and Yao and Ye

(2018) argue that there is an advantage to being at the front of the queue, due to the time priority

rule. Last, Foucault (1999) finds that volatility is a main determinant for limit order management.

Using these concepts, we define a state space for a bid order, which considers the lengths of the

queues on the first three levels of the bid side of the order book and the length of the queue on

the best ask price. The bid limit order can sit at the best bid, one tick behind the bid, or two

ticks behind the bid. We also consider the limit order’s position within the queue and volatility.

For tractability, we estimate a model in which we discretize these features, resulting in a state

space of 18,001 unique market states. At any point in time, the limit order exists in one of the

market states, which then transitions to a different market state in the future. Because our model

is completely data driven, our framework provides the flexibility to use alternate features to define

the state space. For example, the framework can be adapted to investigate a trader’s choice be-

tween a market or limit order, determine the optimal order size given current market conditions,

or consider factors such as a trader’s inventory, risk tolerance, and private information. We further

explore these capabilities in Section 5.

Our approach is also the first attempt in the literature to estimate the impact of factors that

could affect the limit order’s value. We show that the average expected value of a limit order

resting at the best bid is approximately one quarter of a tick. The value of the limit order drops

off substantially as we move away from the best quotes: the expected value of limit orders resting

at one and two levels behind the best bid are 0.10 ticks and 0.03 ticks, respectively. There is also

large variation in the expected value of a limit order. For example, our findings reveal that for all

price levels, a resting limit order loses almost half its expected value when it transitions from the

front to the back of the queue, which supports the theoretical predictions of Yueshen (2021), Li

et al. (2020) and Yao and Ye (2018), who show that queue priority is advantageous. Second, we

extend the findings of Parlour (1998), and quantify the importance of queue size. Specifically, we
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show that the expected value of an order increases with the queue size resting behind the order,

and decreases with the queue size in front of the order. Third, the expected value of a limit order

resting at the best price decreases with an increase in the opposing queue size.

Last, we show that volatility is important for the limit order’s value, with its effect contingent

on whether the stock is tick constrained, consistent with Li et al. (2020). Foucault (1999) predicts

that volatility has two opposing forces on a limit order’s profitability. The first force suggests

an increase in volatility decreases the expected value of a limit order via an increase in the risk

of adverse selection. However, the second force suggests an increase in volatility increases the

expected profit of a limit order as liquidity providers counteract losses from an increase in adverse

selection risk by widening the bid ask spread. Further, Li et al. (2020) show that the minimum

tick size also plays an important role. If the breakeven bid ask spread is always less than the one

tick-mandated spread, liquidity providers do not widen the bid ask spread to compensate for the

increased picking off risk even in times of high volatility. Thus, volatility decreases the expected

value of the limit order as the compensation for providing liquidity (i.e., the difference between the

quoted and breakeven bid ask spread) falls but remains positive.

Conversely, if volatility increases such that the breakeven bid ask spread widens beyond the

one tick-mandated spread, liquidity providers react by widening their quoted bid ask spread to

compensate themselves for the additional risk. In doing so, an increase in volatility increases the

value of the limit order. Consistent with these predictions, we find that volatility has mixed effects

depending on whether the stock is tick constrained. For stocks that are most tick constrained, an

increase in volatility decreases the expected value of a limit order at the best price. On the other

hand, we show that the value of a limit order increases with volatility for stocks that are most tick

constrained.

Our RL approach also enables a comparative analysis of these market features while simulta-

neously accounting for the intricate interdependencies among them. Our analysis ranks the price

level at which a limit order is placed as the most critical variable for traders to consider. This

finding suggests that it is important for theory models to consider order submissions at or away

from the quote as in Goettler et al. (2005). Following the price level, the subsequent factors in order
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of importance are queue sizes at different price levels, market volatility, and the queue position of

the order.

How valuable is the option to cancel a limit order? We find the option to cancel represents 19%

of a limit order’s total expected value, on average. This option becomes even more valuable during

periods of high ex-ante adverse selection risk. In the most extreme case, we demonstrate that a

limit order, which would otherwise have a negative expected value, can have a positive expected

value purely because of the option to cancel the order at a later time.

The advantage of our approach is four-fold. First, similar to Goettler et al. (2005) and Goettler

et al. (2009), our approach can handle a state-action space with large dimensionality. In Section

5, we demonstrate that our general framework can be extended to encompass a wide range of

scenarios. For instance, this framework allows us to explore decisions involving the choice between

limit and market orders, various order sizes, and the inclusion of factors like the liquidity provider’s

risk aversion or current inventory levels.

Second, we can estimate the option value in cancelling a limit order because our limit order’s

expected value estimates are conditional on the future endogenous option to cancel as in Goettler

et al. (2009). By considering the option to cancel, we are able to determine the trader’s optimal limit

order placement, conditional on the optimal management of the order over its life. This approach

differs from most of the previous empirical work that uses probability models, which capture the

outcome of these order placement strategies, regardless of its optimal management (e.g., Griffiths

et al. (2000), Ranaldo (2004), Ellul et al. (2007), Goldstein et al. (2023)).

Third, we complement traditional theory models in that our approach is completely driven

by data enabling us to empirically assess existing theories. Similar to Sand̊as (2015), who tests

Glosten (1994) via a structural model, we use a structural RL model, which removes the need for

assumptions about trader behavior or market dynamics. By removing assumptions about trader

behaviour, we determine optimal order management under real market conditions, where traders

may not necessarily behave rationally, or follow a stylized set of assumptions. Last, our analysis

draws variables from the theoretical literature and thus, we overcome the ‘black-box’ nature of ML

techniques, which can obscure economic intuition (see Chinco et al. (2019)).
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We contribute to the literature in three ways. First, our approach is the first attempt to quantify

the value of a limit order and to systematically assess the factors influencing its value. In doing so,

we can explore previously untested theoretical predictions and uncover new interactions in financial

markets. While existing theoretical models highlight the importance of queue size and queue priority

(Parlour (1998), Yueshen (2021), Li et al. (2020) and Yao and Ye (2018)), we quantify the value of

queue position to a liquidity provider across various market conditions. We empirically show that

volatility has mixed effects on the value of a limit order depending on the degree of tick constraint,

which is consistent with the predictions in Foucault (1999) and Li et al. (2020). Importantly, because

ML techniques are well suited to complex environments characterized by multiple variables, we can

evaluate these relations while holding all other market conditions constant.

Second, our research contributes to the literature on order cancellations. In Copeland and

Galai (1983), when a market maker posts a bid or offer, they effectively write an option. However,

this order also grants the market maker an option to cancel the order at some future point in time.

Despite the substantial increase in order cancellations, constituting 47% of all messages (Brogaard

et al. (2019)), understanding the implications and value associated with the option to cancel an order

remains limited. Our study complements Dahlström et al. (2023), who investigate the determinants

of order cancellations by liquidity providers, by highlighting the economic significance of the option

to cancel.

Finally, we contribute to the growing literature applying learning algorithms to financial mar-

kets. Similar to this study, Bhattacharya and Saar (2022) use a recursive procedure to solve their

model of dynamic limit order markets and Ait-Sahalia and Saglam (2023) model the high frequency

trader’s optimization problem as a Markov Decision Process. Dou et al. (2024) explore how AI-

powered trading algorithms, specifically those combining algorithmic trading with reinforcement

learning, impact price efficiency in a theoretical framework. In Colliard et al. (2022), algorithmic

market makers set quotes using Q-learning algorithms and their trading outcomes are compared to

the outcomes predicted by theory. We also apply a Q-learning approach to evaluate the decision

making process of liquidity providers but in contrast to Colliard et al. (2022) and Dou et al. (2024),

our analysis tests existing theory using empirical data. O’Hara (2015) highlights that in the modern

era, markets and trading have changed, with limit orders now playing a more crucial role. Similarly,

6



Easley et al. (2021) issue a call to update the learning models and empirical methods used. Our

paper answers this call by proposing a novel technique that provides a deeper understanding of

limit order management than traditional learning models or empirical methods allow.

2 Method

2.1 Intuition

Consider a liquidity provider, or trader, who wants to optimally manage their limit orders to ensure

that only limit orders with a positive expected value execute.2 The dynamics of the limit order

book make this task non-trivial, as the trader must constantly monitor their resting limit orders

and cancel an order if it is expected to lose money. To achieve this task, the trader must estimate

the expected value of a limit order conditional on the current state of the market and the future

optimal management of the order over its life cycle.

Estimating the expected value of a limit order, conditional on its future optimal management,

requires the trader to consider the evolution and likelihood of various market conditions. The trader

must evaluate these conditions until one of two events occurs: 1) the order is executed, or 2) the

order is canceled. The decision to cancel an order is endogenous and should be made when the limit

order has a negative expected value.

Figure 1 illustrates the trader’s problem. Initially, the limit order book is in a certain state

at time t0. The gray rectangles represent the volume available at the ask prices, and the white

rectangles represent the volume available at the bid prices. The best bid and ask prices are 13 and

14, respectively, resulting in a bid ask spread of 1. In Figure 1, we assume a trader submits a limit

buy order at t0 at a price of 12 (one tick behind the best available bid) and depict this order as a

black rectangle.

[Insert Figure 1]

2Similarly, automated market makers use a learning algorithm to pick the price that generates the largest expected
profit in Colliard et al. (2022).
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The trader then monitors the limit order book until the volume on the current best bid is

removed, which occurs at t1. For illustrative purposes, we assume the market evolves into one of

only two possible states at t1: State A or State B. In State A, since t0, other market participants

have submitted buy limit orders at 12, causing our trader’s order to move up the queue at 12.

Further, market participants have added buy limit orders at 11, and some of the sell limit orders

at 14 have been removed, either due to cancellations or executions. In contrast, in State B, no new

market participants have submitted additional buy limit orders. Instead, a large sell limit order at

13 has been submitted, removing the bid at 13 that existed at t0.

If the volume available on the bid side of the order book is significantly larger (or smaller)

than the volume available on the ask side of the order book, the midprice is more likely to increase

(or decrease) in the near future (see Cao et al. (2009)). Therefore, the order in State A has a

positive expected value, as the volume on the bid side is much larger than the volume on the ask

side, suggesting a future price rise. In contrast, the order in State B has a negative expected value,

as the volume available on the ask side is much larger than the volume available on the bid side,

indicating the price is likely to decline in the future and the order would be adversely selected.

The expected value of the limit order submitted at t0, if left unmonitored, is the sum of the

expected values in State A and B, each weighted by their respective probabilities. Therefore, if

the probability of transitioning to State B is much higher than the probability of transitioning to

State A, the expected value of the unmonitored limit order at t0 could be negative. However, if

monitoring and the option to cancel the limit order are allowed, the expected value of the order

becomes positive. This is because the trader will cancel the order if the market transitions to State

B, resulting in a profit of 0, and leave the order if the market transitions to State A, where it has

a positive expected value. This oversimplified example demonstrates that the option to cancel can

transform an order from having a negative expected value to a positive one.

In this illustrative example, we make two tenuous assumptions. First, we assume the market

can only transition to two possible states once the trader’s order is submitted. In reality, the market

can transition to an almost infinite number of states. Second, we arbitrarily assert that the limit

order has a positive expected value in State A and a negative expected value in State B. Instead of
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relying on these arbitrary assertions, we can achieve a precise estimate of the true expected values

for State A and State B at time t1 by calculating the expected value of the limit order within

both states, conditional on the order’s optimal management throughout its life cycle. This problem

presents the same challenge we are attempting to address at t0.

To overcome these limitations, we use a recursive state space technique known as reinforcement

learning (RL). This technique allows us to accommodate numerous states and capture the inherently

recursive nature of the problem.

2.2 Reinforcement Learning

Typically in an RL framework, an agent has knowledge of the current state, s, and then makes an

action, a. Jointly, we refer to this state-action pair as an experience tuple defined as ⟨s, a⟩. If there

are S states and A actions, then the agent has the choice of making A possible actions in S different

states, which implies there are S × A unique experience tuples. We assume that each experience

tuple can transition the agent to a new state, s′, with probability T (⟨s, a⟩, s′). For each action in a

given state, the agent receives an immediate reward, R(s, a). The agent’s objective function is to

maximize the total future reward by choosing the appropriate actions for each state that maximize

the long-run discounted sum of all the immediate rewards received for each action in the future.

More formally, if we define the rules or policy an agent must follow as π, the optimal value of

a state is computed as follows:

V ∗(s) = max
π

E
( ∞∑
t=0

γtE[R(st, at)]
)
, (1)

where E[R(st, at)] is the expected immediate reward at time t and γ is a discount factor bound

between 0 and 1. V ∗(s) is the expected infinite discounted sum of reward the agent receives if

they start in state s and execute the optimal policy defined by π∗ moving forward. In our setup,

the optimal policy, π∗, defines how the trader should optimally manage their limit order moving
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forward (i.e., the action the trader should take given current market conditions and current order

positioning). Similarly, the reward is the profit generated from earning the spread or favorable price

movements after the order executes.

For every experience tuple, there is an associated Q-value, Q∗(s, a), which is the expected

infinite discounted sum of reward the agent gains if the agent takes action a while in state s, then

subsequently follows the optimal policy path. Using (1), we note that Q∗(s, a) can be expressed

recursively as:3

Q∗(s, a)︸ ︷︷ ︸
long run expected value
from taking action a

= E[R(s, a)]︸ ︷︷ ︸
expected immediate

value from
taking action a

+γ
∑
s′∈S

probability of
transitioning to
future state s′

by taking
action a︷ ︸︸ ︷

T (⟨s, a⟩, s′)

expected long
run value from
taking optimal
action a′ when

in state s’︷ ︸︸ ︷
max
a′

(Q∗(s′, a′))︸ ︷︷ ︸
expected future value

from taking future optimal
actions, a′, while in future states, s′

, (2)

where s′ and a′ define future states and actions, respectively. Equation (2) is the basis of our

framework. In our setup, Q∗(s, a) is the expected long run value of the limit order if the trader takes

action a while in state s and in all future states s′ takes the optimal action a′. We observe that

this expected long run value equals any immediate value for taking action a plus the expected long

run value the trader receives in future state s′ if they make optimal future action a′. Recognizing

that the future state s′ is not known with certainty, our RL model assigns different transition

probabilities, T (⟨s, a⟩, s′), for all possible future states. Equation (2) is recursive because both the

right hand side and the left hand contain a Q∗(s, a) term. Thus, for estimation we use an iterative

learning rule known as Q-learning.4

Estimating (2) requires us to first define a state-action space that reflects the problem of

optimal limit order management. Specifically, the states should capture current market conditions

and information about the order, while the actions should reflect the decisions available to the

trader. Next, estimation requires two key input variables: the immediate reward and the transition

probabilities. In the following sections, we describe how we cast the optimal limit order management

3See Watkins and Dayan (1992) for a full derivation.
4We provide a detailed illustrative example of the learning rule in Appendix C
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problem within the RL framework. We explain the basic timing of our trader’s decision process,

define our state and action space, and describe how we empirically estimate the input variables:

the immediate reward and the transition probabilities.

2.2.1 Timing

Figure 2 depicts the timing of our trader’s decisions. In essence, the trader follows a recursive

Markovian decision making system. At the start of each interval, the trader makes a decision based

on observations of the current market conditions, for example, the existing shape of the order book

and their own private information about their limit order’s status. The trader decides whether to

leave or cancel their existing limit order. At the start of the subsequent interval, the trader repeats

the same decision making process. This decision-making process repeats continuously until the limit

order executes or the order is canceled. If the limit order executes, the trader continues to monitor

market conditions to observe the long-term value of the executed order.

[Insert Figure 2]

This recursive decision-making system allows the trader to keep the same limit order active for

multiple consecutive intervals. During this time, the trader can monitor the order’s queue position

and market conditions. If at any point the order appears to have a high chance of adverse selection,

indicated by a negative expected value, the trader cancels the order.

In our empirical section, we select a short time interval of 100ms. Choosing a short time interval

offers three advantages. First, a short interval more closely reflects a trader who continuously

monitors their orders. Second, a shorter interval provides more data points for model estimation.

Third, it allows us to produce more accurate estimates of the likelihood of transitioning to future

market conditions, as dramatic changes are less likely to occur over short intervals.
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2.2.2 Actions

The A actions available define all possible decisions or individual actions, a, a trader can make

given the current state. In our setup, the trader can make two possible actions. The trader can

either cancel their resting limit order, which we define as C, or the trader can leave their existing

limit order in the queue by taking no action, which we define as NA. Taken together, the trader’s

action space is defined by

a ∈ {C,NA}. (3)

Figure 2 depicts the timing of the actions. Specifically, the trader decides on an action at the

beginning of the interval. To ensure that the trader’s limit order remains at price levels within our

defined state space, we make the following adjustment: when the market transitions to a state in

which limit order lies outside the state space, then the action C supersedes action NA. This implies

that the resting limit order is canceled. This adjustment forces the trader to cancel resting limit

orders if the best bid and offer has diverged away from the trader’s resting limit order.

2.2.3 States

The state, st, reflects information available to the trader about the environment at time t. We

decompose the environment into two sets of variables that reflect the current state: private and

public. The public variables represent current market conditions available to all market participants.

Parlour (1998) suggests that queue sizes in the limit order book influence the strategic behavior of

traders. For this reason, we include the size of the queue at the best bid, one tick below the best bid

and two ticks below the best bid, which we define as qB0 , qB1 and qB2 , in our state space. Similarly,

we include the size of the queue on the opposing side of the book (the best ask), which we define

as qA0 . Given queue sizes are essentially continuous, for tractability, we reduce the dimensionality

of the state space by discretizing queue sizes. Specifically, we categorize queue lengths into five

quintiles; extremely long (ELo), long (Lo), normal (No), short (Sh) and extremely short (ESh).5

5To further reduce dimensionality, we discretize the queue size at qB2 to only three terciles.
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Moreover, Foucault (1999) finds that volatility is a main determinant for limit order management.

For this reason, we also include volatility, V , as a public variable, which we discretize into terciles;

low (Low), medium (Med) and high (Hi).6

The private variables we use to define our state space capture information that is unique to

the trader. Specifically, we capture the trader’s current inventory position, I, which in our model

is either 0 (no position) or 1 (long). We also include a variable, L, which captures the price level

of the trader’s limit order. We let L take on the value of i ∈ 0, 1, 2 if the trader has a resting limit

order submitted at level i of the order book. Finally, because there is an advantage to being at

the top of queue as the order has time priority (see Yueshen (2021), Li et al. (2020) and Yao and

Ye (2018)), we include the queue position of any resting limit orders in our state space, which we

define by Q. Similar to our previous variables, for tractability, we reduce the dimensionality of our

queue position to five quintiles, which we define as top, top-middle, middle, middle-back and back.

Last, to ensure we estimate the expected value of a single limit order in isolation, we include

a state that captures when the trader cancels their order. This state is a terminal absorbing state

where the trader remains once they cancel their order. We define this terminal state by setting

Q = X and L = X. Taken together, these definitions let us express the current market state, s, as

a vector

s = [I, L,Q, qB0 , qB1 , qB2 , qA0 , V ] (4)

6To proxy for volatility, we compute the difference between the log of the highest and the log of the lowest traded
price over the last 100 trades in the stock.
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where

I ∈ {0, 1}

L ∈ {0, 1, 2, X}

Q ∈ {top, top-middle,middle,middle-back, back,X}

qj ∈ {ELo,Lo,No, Sh,ESh},∀j ∈ {B0, B1, B2, A0}

V ∈ {Low,Med,Hi}

In our setup, we restrict the trader to executing only one limit order. We achieve this restriction

by ensuring no additional orders exist once a long position is achieved. As a result, the states when

the trader is long are only defined by the four public limit order book information variables and

volatility (qB0 , qB1 , qB2 , qA0 , V ). This restriction implies there are m possible states when the trader

is long.7 In contrast, when the trader has no inventory and is working their limit order, the state is

defined by the public variables (i.e., queue sizes and volatility) plus the private variables (i.e., queue

position and the price level of the resting limit order). The additional private variables results in n

possible states when the trader has no inventory.8 Collectively, in this setup, we have n states when

the trader has no inventory, m states when the trader is long and one absorbing state for when the

trader cancels their order, thereby resulting in m + n + 1 total possible states, where n > m and

m+ n+ 1 = S.

2.2.4 Transition matrix

With the states and action defined, we require estimates of the transition probabilities. Recall that

if the limit order is currently in state s and the trader makes action a, the order transitions to

states s′ with probability T (⟨s, a⟩, s′). Since the transition probabilities from state i to all other

7In our setup m = 1, 125 as we have three public limit order book information variables (qB0 , qB1 , qA0), each with
five possible values, one order book information variable with three possible values (qB2) and one volatility variable
(V ) with three possible values. Thereby resulting in 53 × 3× 3 possible combinations.

8In our setup n = 16, 875. We have 1,125 possible public states, plus the private price level and queue position
variables, which have three and five possible values respectively. Collectively, these variables result in 1, 125 × 5 × 3
possible combinations.
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states must sum to 1 for a given action, for all i and a,
∑S

j=1 T (⟨si, a⟩, sj) = 1.

Because our framework has S unique market states, each action has an S × S transition

probability matrix. When the trader makes no action (i.e., action NA), which leaves their resting

limit order, the future state the limit order transitions to is not known with certainty. Thus, we

empirically estimate the S × S transition probabilities for action NA. To estimate T (⟨si, NA⟩, sj)

we determine the number of times we observe a limit order in state si, followed by the limit order

being in state sj in the subsequent interval, and express this number as a fraction of all observations

of limit orders in state si. More formally, if we define Ni,j |NA as the number of times a limit order in

state i transitions to state j, it is straightforward to show that the MLE estimate of T (⟨si, NA⟩, sj)

is

T (⟨si, NA⟩, sj) =
Ni,j |NA∑S
j=1Ni,j |NA

. (5)

In contrast, when a trader cancels their limit order, they transition to the absorbing cancel

state with certainty. For this reason, we do not require empirical estimates for the S×S transition

probabilities for action C, as the probability of transitioning to the absorbing cancel state is always

1. To ensure the trader only has one resting limit order, we restrict any state where the trader has

an inventory position, or has already canceled their order, to not having a resting order. Because

of this restriction, the action to cancel is prohibited and has a zero probability for all states where

the trader has a long inventory position, or has canceled their order.9

To generate the full transition matrix, T , that captures all state actions, we vertically stack

the S × S transition matrix for action NA on top of the S × S transition matrix for action C.

2.2.5 Immediate reward

An action from a given state can transition the trader to a new state and produce an immediate

reward in the process. In our setup, the immediate reward captures any value, or profit, generated

9In Appendix A, we provide a detailed description of the structure and design of the transition matrices for each
action.
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during the transition from the current state to the next. This profit is derived from two sources: 1)

price movements while carrying inventory, and 2) earning the spread through limit order execution.

If the trader holds inventory when transitioning from state s to s′, the immediate reward for this

transition is the observed change in the midpoint during the transition (first component of equation

(6)). Alternatively, if the trader’s limit order executes during the transition from s to s′, they profit

by earning the spread. In this case, the immediate reward is the difference between the midpoint

price observed in state s′ and the execution price of the limit order (second component of equation

(6)). Finally, if the trader has no inventory in state s and no order executes during the transition

from state s to s′, then the immediate reward must be zero. Formally, defining the midpoint price

in state i as midi, the immediate reward from making action a while in state s that results in a

transition to state s′ is

R(⟨s, a⟩, s′) = (mids′ −mids)× Is︸ ︷︷ ︸
Profit from carrying

inventory

+(mids′ − execPrices)× Execs,s′︸ ︷︷ ︸
Profit from execution

, (6)

where Is equals 1 if the the trader has a long inventory position when in state s and 0 otherwise

and execPrices equals the price of the limit order and Execs,s′ equals 1 if the limit order executes

during the transition from state s to s′ and zero otherwise.

To compute the immediate reward for each transition, we require empirical estimation when the

trader leaves their order (action NA). To obtain these estimates, we first compute the immediate

reward using equation (6) for every observation in the data. Then, for each state-action transition,

we compute the average immediate reward across all observations that belong to that state-action

transition.10 In contrast, when the trader cancels their order, the immediate reward must be zero

as they have no limit orders executed and no inventory position. Therefore, for action C, the S×S

immediate reward matrix contains only zeros.

Similar to the transition matrix, we create the immediate reward matrix for all experience

10In Appendix B, we provide a detailed description of the structure and design of the immediate reward matrices
for action NA.
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tuples by vertically stacking the immediate reward matrix for action NA and the immediate reward

matrix for action C, resulting in a matrix of dimension 2S×S. We compute the expected immediate

reward for taking action a while in state s as

E[R(s, a)] =
∑
s′∈S

T (⟨s, a⟩, s′)×R(⟨s, a⟩, s′). (7)

3 Data

We use ITCH data for the Australian Securities Exchange (ASX) extracted from the SIRCA

database for the period July 3, 2017 to September 29, 2017. Table 1 contains summary statis-

tics for the 20 sample stocks analyzed, ranging from the lowest price stock of Santos (STO), with

a price of approximately 3.50 over the sample period to CSL Ltd. (CSL) with an average price of

129.86. The sample stocks also cover a wide range of average bid ask spreads, from 1.00 tick to 2.59

ticks.

[Insert Table 1]

The ITCH data provides comprehensive order book information with nanosecond-level times-

tamps, allowing us to fully reconstruct the order book at all price levels. We extract detailed

information for each resting limit order, including its queue position. To facilitate our analysis,

we process the data according to the following steps. First, we reconstruct the limit order book,

enabling us to replay the market activity throughout a trading day. Second, for each trading day,

we create 210,000 consecutive intervals, each 100 milliseconds long. The first interval begins at

10:10, coinciding with the start of continuous trading, and the last interval concludes at 16:00 when

continuous trading ends.

At the beginning of each interval, we assume there is a series of hypothetical limit orders

positioned at various price levels and queue positions. To align with our RL model, we consider

hypothetical bids for one share placed at the prevailing best bid, one tick behind the best bid,
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and two ticks behind the best bid. Additionally, at each of these price levels, we assume there is

a hypothetical order positioned at the top of the queue, three-quarters of the way up the queue,

halfway up the queue, one-quarter up the queue, and at the very back of the queue.11

Next, using the granularity of the data, we track these hypothetical limit orders over the next

100ms and determine if any of the orders execute.12 In the event that the hypothetical limit order

remains unexecuted within the 100ms timeframe, we monitor its progress by tracking the execution

of real orders that precede it, as well as the cancellation and submission of real orders during the

interval. This approach enables us to determine the position of the hypothetical order within the

order book.

For each hypothetical order, we record information on the state space at both the beginning

and the end of the interval. Specifically, at the start of the interval, we capture the volatility, initial

queue position, and the total volume available at the first three best bid and best ask prices. At the

end of the interval, we note whether the order executes. If the order does not execute, we report

the order’s new queue position. Further, regardless of execution, we record the volatility and total

volume available at the first three best bid and best ask prices at the end of the interval.

With the extracted information, we can identify each order’s initial starting state and its

state at the end of the interval. This information allows us to estimate the transition matrix and

immediate reward matrix using the process outlined in Section 2.

4 Results

In this section, we estimate our model using four public state variables based on the limit order

book queue sizes ( qB0 , qB1 , qB2 and qA0), each with five possible values (except qB2 , which only has

three states for tractability reasons).13 Additionally, we include a public volatility state variable

11We assume each order consists of only one share to ensure it does not have a significant economic impact.
Additionally, the price and queue position of the hypothetical orders are selected to ensure our observations cover
the state space defined by our RL framework.

12We assume a hypothetical order executes if, during the 100ms interval, a real order positioned behind it in the
queue executes, or if a trade occurs at a price worse than the hypothetical order’s price.

13Queue size quantiles are formed for each stock at each price level.
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with three possible values, where volatility is defined as the difference between the log of the highest

traded price and the log of the lowest traded price over the last 100 trades. We also consider two

private state variables related to the trader’s resting limit order: L and Q, which have 3 and 5

possibles values, respectively.

This state space results in 16,875 different states when the trader has no inventory and is

executing a limit order, 1,125 unique market states when the trader’s order has executed and

they hold an inventory position, and 1 absorbing cancel state. In total, this gives us m = 16, 875,

n = 1, 125 and o = 1, resulting in 18,001 unique states.14

In Section 4.2 , we investigate the effect of each market feature on the expected value of a

limit order. In Section 4.3, we assess the relative contribution of each market feature to the order’s

expected value. Finally, in Section 4.4, we evaluate the value of the option to cancel a limit order.

4.1 The expected value of a limit order

The results presented in Table 2, Panel A show that an average limit order submitted within two

ticks of the best bid and ask price has an expected value of 0.146 ticks, conditional on the order’s

optimal management over its life.

Next, we investigate the relation between a limit order’s price level and its expected value. The

relation between a resting limit order’s price and expected value is not immediately clear due to two

opposing forces. First, the further a limit order is from the best bid or offer, the more favorable the

execution price. However, this price improvement comes at the cost of lower execution probabilities

(see Handa and Schwartz (1996)).

Figure 3 presents a boxplot of expected value for all markets states at each of the three price

levels defined in our state space (best bid, one tick behind and two ticks behind the best bid).

In Figure 3, we observe that the expected value of a limit order is positive, on average. This

result is consistent with the empirical findings of Handa and Schwartz (1996), who report that a

randomly submitted limit order is profitable and supports the hypothesis that liquidity providers

14For further clarity, we demonstrate the full estimation process via a detailed illustrative example in Appendix C.
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who accommodate purchases (sales) should be compensated with a higher (lower) price than the

fundamental value (see Scholes (1972)).

[Insert Figure 3]

Table 2, Panel B reports the summary statistics for our expected value estimates. The first row

reports summary statistics for all market states, whereas rows 2 to 4 report summary statistics for

limit orders conditional on their price level. Consistent with Figure 3, when the order is resting at

the best bid, its mean expected value is highest at 0.262 ticks. When an optimally managed limit

order moves away from the best bid, its expected value drops to 0.105 ticks when it is one tick

behind the best bid, and drops further to 0.031 ticks, when it is two ticks behind the best best bid.

Similarly, the variance in a limit order’s conditional expected value decreases as the order moves

away from the best price. The expected value of an order located at the best bid has a standard

deviation of 0.134 ticks, but this value drops to only 0.01 ticks when the order is two behind the

best bid.

[Insert Table 2]

The observation that the mean expected value and variance of expected value decreases as

the order moves further away from the best bid or offer may explain why the majority of order

cancellations occur at the best bid or ask (see Fong and Liu (2010)). Intuitively, a trader has little

incentive to cancel a limit order resting far from the best price. Such an order likely has a small

positive expected value because it carries minimal execution risk and could gain favorable queue

priority in the future. However, if the market moves toward the resting limit order, increasing its

probability of execution, the expected value could turn negative. At that point, the trader should

consider canceling the order.
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4.2 Features influencing a limit order’s expected value

4.2.1 Queue position

In this section, we investigate the effect of a limit order’s queue position on the order’s expected

value. Some argue that there is an advantage to being at the top of the queue, due to the time

priority rule (see Yueshen (2021), Li et al. (2020) and Yao and Ye (2018)). In contrast, some

literature suggests that small incoming market orders are more informed (see Brogaard et al.

(2014)). Thus, orders at the top on the queue execute against these small informed orders, whereas

orders further back in the queue can only execute against larger, less informed orders. To determine

the effect of queue position on the expected value of a limit order, we estimate the following

regression:

Qs = β1QueuePoss + State Fixed Effects+ ϵs, (8)

where Qs is the expected value of a limit order in state s and QueuePoss is the order’s queue

position (0 being the top and 1 being the back) in state s. We use fixed effects for all other

variables that define our state space to isolate the effect of queue position.

Table 3 presents the mean coefficient for orders resting at three different positions: the best bid

(column 1), one level behind the best bid (column 2), and two levels behind the best bid (column

3), across all 20 sample stocks. Additionally, Table 3 reports the number of stocks with significantly

positive or negative coefficients at the 5% level, as in Engle and Patton (2004).15

Our results strongly indicate that queue priority benefits the liquidity provider. The coefficient

for queue position is negative and significant across all 20 sample stocks and all price levels. This

implies that the further back a limit order is in the queue, the lower its expected value. The

magnitude of these coefficients suggests that queue position has a substantial economic impact on

the expected value of a limit order. For instance, an order’s expected value at the best bid decreases

15Each regression has 5,625 observations, encompassing the following states: five queue position states, five queue
size states at the best bid, five queue size states one tick behind the best bid, three queue size states two ticks
behind the best bid, five queue size states at the best ask, and three volatility states. This results in a total of
5× 5× 5× 3× 5× 3 = 5, 625 observations.
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by 0.12 ticks when it moves from the top of the queue (QueuePoss = 0) to the back of the queue

(QueuePoss = 1). This decrease is economically significant, representing almost half of the average

value of a limit order resting at the best bid, which is 0.262 ticks.

We also observe that the magnitude of the mean coefficient decreases as the order moves further

from the best bid. Specifically, for orders at the best bid, the mean coefficient is -0.12. For orders

one level behind the best bid, the mean coefficient is -0.05, and for orders two levels behind the

best bid, the mean coefficient further decreases to -0.01. This pattern indicates that queue priority

becomes more critical as the order moves closer to the best price, where execution is most likely.

[Insert Table 3]

Our results highlight the advantages of having orders positioned at the front of the queue,

which is consistent with Yueshen (2021), Li et al. (2020) and Yao and Ye (2018). Orders at the

front of the queue have higher execution probabilities and lower adverse selection risk compared

to those at the back. This lower risk occurs because an order at the back of the queue can only

execute against large incoming market orders, which have a significant adverse price impact when

all resting limit orders at the current price level are removed. In contrast, orders at the front of the

queue can execute against small incoming market orders, which do not exhaust the liquidity at the

current price level. The combination of higher execution likelihood and lower adverse selection risk

results in a higher expected value for orders at the front of the queue.

Our findings also support the argument by Lo et al. (2002) that the simulated profits from

placing a network of buy and sell limit orders, as reported by Handa and Schwartz (1996), may

be overstated. This is because their assumption that the orders are placed at the top of the queue

does not fully account for the critical importance of queue priority.

4.2.2 Queue size

Existing theoretical literature suggests that queue sizes affect the value of a limit order (see Parlour

(1998), Goettler et al. (2005), Goettler et al. (2009)). However, there are few empirical tests. In this
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section, we empirically investigate how queue size affects the expected value of a limit order. To

investigate the relation between queue sizes and expected value, we estimate the following regression

for orders at different price levels:16

Qs = β1q
B0
s + β2q

B1
s + β3q

B2
s + β4q

A0
s + State Fixed Effects+ ϵ, (9)

where Qs is the expected value of a limit order in state s, qBi
s is the size of the bid queue at

level i in state s and qA0
s is the size of the queue on the ask. To isolate the effect of queue sizes, we

use fixed effects for all other variables that define our state space.

Table 4 presents the results for orders resting at the three different prices levels defined in our

state space (best bid, one tick behind the best bid, two ticks behind the best bid). For each variable,

we report the mean coefficient across all 20 sample stocks. To ensure the mean coefficients are not

driven by one stock, we also report the number of stocks with statistically positive or negative

coefficients.

Overall, our results suggest that the larger the queue size behind a resting limit order, the

higher the expected value of the order. Conversely, the larger the queue size in front of a resting

limit order, the lower the expected value of the order. Observing the results for orders resting at

the best bid, we find that the mean coefficients for qB0 , qB1 , qB2 are all positive at 0.06, 0.05 and

0.04 respectively, suggesting that an increase in queue lengths at or behind the resting order’s price

level increases the limit order’s expected value. This relation weakens at price levels further away

from the best bid. Not only do the average coefficients drop monotonically from 0.06 to 0.04 as

we transition from qB0 to qB2 , but we also see the number of stocks with positive and significant

coefficients drop from 19 to 18 to 14 as we transition from qB0 to qB1 to qB2 .

In contrast to our findings for orders resting at the best bid, for orders behind the best bid

(columns 2 and 3), an increase in queue sizes at price levels ahead of the resting limit order

16There is no existing theory suggesting that price levels have a linear affect on limit order value. Thus, we estimate
a regression for all orders at each price level individually.
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decreases the order’s expected value. For example, the coefficient for queue sizes at the best bid

(qB0) is negative and significant for all 20 sample stocks for orders resting one level behind the

best bid (column 2). Similarly, for orders resting two levels behind the best bid in column 3, the

coefficients for queue lengths at the best bid (qB0) and one level behind the best bid (qB0) are

negative and significant for all 20 sample stocks.

[Insert Table 4]

Our findings manifest in two ways. First, when the volume in front of the limit order increases,

the order’s probability of execution worsens. This is because the volume in front of the order exerts

order book pressure that can drive the price away from the order. Cao et al. (2009) demonstrate

that if the volume on the bid side of the order book is significantly larger (smaller) than the volume

available on the ask side of the order book, then the midpoint price is more likely to increase

(decrease) in the near future. Thus, if a resting limit order has a large volume ahead of it, that

limit order is more likely to be on the thick side of the book. As a result, the price is likely to shift

away from the order, resulting in non-execution.

Second, a limit order with more volume in front of the order faces higher adverse selection

risk. This is because the volume in front of the order must first execute before the limit order can

execute. For example, a limit order behind a large block of volume can only immediately execute

when a larger incoming market order enters to first remove the large block of volume. These large

market orders cause the largest adverse selection (see Hasbrouck (1991)). In contrast, an order with

no volume in front of it can execute against the next incoming market order, regardless of how small

it is.

The relation between a limit order’s expected value and the volume on the opposite side of

the book also depends on the order’s price level. In Table 4, the coefficient for the volume on the

opposite side of the book (qA0) is negative and significant for all sample stocks when the order

is on the best bid. However, the sign becomes positive and significant for orders behind the best

bid. This finding suggests an increase in volume on the opposite side of the order book decreases

(increases) the expected value of the limit order if it is at (behind) the best price.

24



This difference in effect is due to a trade off between adverse selection and execution prob-

ability. Cao et al. (2009) document that a large volume on the opposite side of the book creates

book pressure that causes shifts in the midpoint towards the limit order, which increases both the

likelihood of adverse selection and the probability of execution. When a resting limit order is on

the best bid, an increase in ask volume increases the likelihood of a downtick, thereby increasing

the expected losses from adverse selection. This negative effect is stronger than the potential gains

resulting from a higher probability of order execution. In contrast, when the order is behind the

best bid, the expected value from increased execution probability outweighs the expected losses

from adverse selection risk. Adverse selection risk remains low for orders behind the best bid as the

order can be subsequently canceled if market conditions worsen.

Taken together, our results provide strong support for Parlour (1998); we find that the larger

the queue size behind a resting limit order, the higher the expected value of the order, and the

larger the queue size in front of a resting limit order, the lower the expected value of the order.

We also document that the queue size on the opposite side of the book has mixed effects due to a

trade off between adverse selection and execution probability. As the queue size on the other side of

the book increases, the risk of adverse selection and execution probability both increase. For orders

resting at the best price, the losses from adverse selection outweigh the gains from higher execution

probability. In contrast, for orders resting behind the best price, the gains from higher execution

probability outweigh the loses from adverse selection. Overall, our findings provide support for the

predictions of Parlour (1998), Goettler et al. (2005) and Goettler et al. (2009) that strategic traders

should consider queue sizes at multiple price levels and demonstrate pervasive features that exist

for orders at different price levels.

4.2.3 Volatility

In this section, we explore the impact of volatility on the expected value of a limit order. While

existing theoretical models provide some insights into the relation between volatility and the ex-

pected value of a limit order, there is no clear consensus due to two opposing forces identified in

the literature.
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The first force suggests that an increase in volatility decreases the expected value of a limit

order. Specifically, Foucault (1999) predicts that when volatility increases, the picking off risk for a

limit order increases, and the losses that ensue are larger, decreasing the expected value of the limit

order. The second force acts as a response to the first; to compensate for the higher likelihood of

adverse selection and the corresponding reduction in the expected value of a limit order, liquidity

providers widen the bid ask spread when volatility increases (as discussed in Copeland and Galai

(1983) and Foucault (1999)). In a continuous order book where limit orders can be placed at any

price level, liquidity providers can adjust the bid ask spread precisely to offset the anticipated losses

due to the increased picking-off risk.

However, in practice, price levels are discrete, and liquidity providers may not always be able

to set a breakeven bid ask spread that perfectly offsets the increase in volatility, as described in Li

et al. (2020). In the first scenario, the breakeven bid ask spread is below one tick, as shown in Figure

4, Panel A. Here, the liquidity provider receives the difference between the one tick mandated bid

ask spread and the breakeven bid ask spread as compensation for providing liquidity. The bottom

of Figure 4, Panel A illustrates the effect of an increase in volatility. As volatility increases, the

breakeven bid ask spread widens but still remains within the one-tick mandated spread, resulting

in a decrease in the liquidity provider’s compensation. This reduction in compensation lowers

the expected value of the limit order. This scenario is particularly pronounced in stocks that are

constrained by the minimum tick size.

[Insert Figure 4]

In the second scenario, shown in Figure 4, Panel B, an increase in volatility leads to a breakeven

bid ask spread that exceeds the mandated minimum tick size. In response, liquidity providers widen

their quoted bid ask spread to a level that is at least as wide as the breakeven spread. As a result,

an increase in volatility raises the expected value of a limit order resting at the best bid price. This

scenario is most common in stocks that are least constrained by the minimum tick size.

In summary, due to price discretization, volatility can either increase or decrease the expected

value of a limit order, depending on whether the stock’s trading is constrained by minimum tick
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size requirements. Our initial analysis examines the impact of market volatility on the expected

value of a limit order across all stocks. We then further explore the effects of volatility on individual

stocks, focusing on whether their trading is constrained by minimum tick size requirements.

For our initial investigation using the full sample of stocks, we conduct the following regression

analysis:

Qs = β1V olatilitys + State Fixed Effects+ ϵs, (10)

where Qs is the expected value of a limit order in state s, and V olatilitys is the discretized

volatility in state s.17 To isolate the effect of volatility, we use fixed effects for all other variables

that define our state space. Since our primary interest is in the effect of volatility on orders at the

best bid or offer, and this effect may vary across price levels, we estimate (10) on the subset of limit

orders at the first price level of our defined state space.

Table 5, Column 1 reports an average coefficient of 0.38 across all sample stocks. While this

average coefficient suggests that volatility increases the expected value of a limit order, a closer

inspection of the individual coefficients for each stock reveals a more complex picture. Specifically,

we find positive coefficients for 9 out of the 20 sample stocks, while 11 out of 20 stocks show negative

coefficients. Thus, the effect of volatility on the expected value of a limit order at the best bid is

not consistent across all stocks.

[Insert Table 5]

Because liquidity providers can widen the bid ask spread to offset the increase in picking off

risk, volatility could have mixed effects on the expected value of a limit order (Foucault (1999)).

According to Li et al. (2020), the impact of volatility should vary depending on whether a stock’s

trading is tick constrained. For stocks that are typically tick constrained, we propose that an

17Volatility is measured as the highest traded price minus the lowest traded price over the last 100 trades and
discretized into terciles.
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increase in volatility negatively affects the expected value of a limit order, as the breakeven bid

ask spread is narrower than the one tick mandated spread. Conversely, for stocks that are less tick

constrained, we predict that an increase in volatility will raise the expected value of a limit order.

In these cases, liquidity providers can widen their quoted bid ask spread to compensate for the

increased picking off risk during volatile periods.

To test whether volatility has different effects on the expected value of a limit order for tick

constrained and unconstrained stocks, we split the sample stocks into two subsamples. Table 5,

column 2 reports results for the quartile of the most tick constrained stocks, while column 3 reports

results for the quartile of the least tick constrained stocks. Consistent with our hypothesis, we find

that volatility decreases the expected value of a limit order for tick constrained stocks. Specifically,

Volatility is negative and significant for all stocks within the tick constrained subset. Conversely,

for all stocks not constrained by the tick size in Column 3, we find that volatility increases the

expected value of a limit order.

Overall, our results support the findings of Foucault (1999) and the tick size channel proposed

by Li et al. (2020). For stocks that are most tick constrained, the breakeven spread lies within the

one-tick mandated spread. In these cases, liquidity providers are unable to widen the quoted bid ask

spread, leading to a decrease in the expected value of a limit order as volatility increases. Conversely,

for stocks that are least tick constrained, an increase in volatility can push the breakeven spread

beyond the one-tick minimum. In response, liquidity providers widen the quoted bid ask spread to

compensate for the additional picking-off risk. As a result, volatility increases the expected value

of a limit order for these less constrained stocks.

4.3 How important are the variables?

The results so far indicate that price levels, queue sizes, queue position, and volatility all influence

the expected value of a limit order. In this section, we assess the importance of these variables using

a technique from the machine learning literature known as Mean Decreased Accuracy (MDA). This

method has been applied to the finance literature by Easley et al. (2021) and Kwan et al. (2024).

In our context, MDA measures the decrease in accuracy of the forecasted expected value of a limit
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order when one of the variables defining our states is intentionally measured with error.

Estimating the MDA requires two parameters. The first parameter is the true expected value

of a resting limit order, Q(s,NA), which we estimate using the RL model described in Section 2.

Specifically, we have 18,001 Q(s,NA) estimates corresponding to 16,875 different states when the

trader has no inventory and is executing a limit order, 1,125 unique market states when the trader’s

order has executed and they hold an inventory position, and 1 absorbing cancel state.

The second parameter is the randomized expected value of a resting limit order, Q(skR, NA),

which we estimate by randomizing one of the seven variables that define the state space while

keeping all other variables constant.18 Q(skR, NA) represents the expected value associated with the

randomly altered state, skR, created by randomizing variable k. This randomization helps isolate

the effect of variable k on the Q(s,NA) estimate.

Using these two parameters, we estimate the MDA for variable k as follows:

MDAk =

S∑
s=1

(
|(Q(s,NA)−Q(skR, NA))|

Q(s,NA)

)
/S. (11)

The MDA measures the error in expected value estimates that occurs when a variable is

measured with error. Therefore, the larger a variable’s MDA, the more important that variable is

in determining the expected value of a limit order. For each variable, k, we estimate the MDA and

repeat this process 100 times.

Table 6 presents the mean and standard deviation of the MDA for each variable. Our findings

indicate that the most influential factor affecting the expected value of a limit order is the price

level at which the order rests. The next most important variable is the queue size on the same side

of the order book as the limit order. However, the importance of queue size decreases as the queues

move further from the best bid. Specifically, the queue size at the best bid (MDA = 1.22) is the

most important, followed by the queue size one tick behind the best bid (MDA = 1.17), and then

the queue size two ticks behind the best bid (MDA = 0.68).

18The seven variables include the price level, queue position, queue sizes at different price levels (best bid, one tick
behind the best bid, two ticks behind the best bid, best ask), and volatility.
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After considering queue sizes on the same side of the book as the order, the next most important

variable is the queue size on the opposite side of the order book (MDA = 0.68), followed by volatility

(MDA = 0.56), and lastly, queue position (MDA = 0.2).

[Insert Table 6]

4.4 The option to cancel

Despite the prevalence of order cancellations, the option to cancel has received little attention in the

literature. In this section, we investigate the value of the option to cancel and identify the market

conditions under which this option is most valuable. For our analysis, we estimate a constrained

version of our RL model, which restricts the trader to only one action, NA, meaning the trader is

unable to cancel their order.19 Thus, the estimated Q values from this restricted model represent

the expected value of a limit order that is not optimally managed. To determine the value of the

option to cancel, we calculate the difference between the Q value of the unrestricted model, which

includes the option to cancel, and the Q value of the restricted model, which lacks this option.

Table 7 reports the summary statistics on the value of the option to cancel. The first row

reports summary statistics for limit orders across all market states, while rows 2 to 4 focus on

limit orders conditional on their price level. On average, the value of the option to cancel a limit

order on the best bid is 0.049 ticks. This means that, on average, the option to cancel a limit order

from the best level is worth approximately 19% of the total value of an optimally managed limit

order.20 This finding suggests that the endogenous option to cancel a limit order contributes an

economically meaningful amount towards the overall expected value of an optimally managed limit

order.

[Insert Table 7]

Table 7 also suggests that the value of the option to cancel varies significantly depending on

19Recall in the full model, the trader can cancel the order, C, or take no action, NA.
20Table 2 reports a mean value of an optimally managed limit order at the best bid of 0.258 ticks.

30



prevailing market conditions. Regardless of the price level at which orders are resting, the data

shows a substantial disparity between the means and medians, indicating a pronounced right skew.

Over the full sample, the mean value of the option to cancel is 0.024 ticks, whereas the median is

only 0.008 ticks.

Theoretical considerations suggest that the option to cancel is most valuable when the limit

order is most likely to be adversely selected. However, it is difficult for a trader to know when

adverse selection risk is high ex-ante. To proxy for an ex-ante measure of adverse selection risk, we

draw on Cao et al. (2009), who show that order book pressure can be used to predict short term

price movements, and Goldstein et al. (2023) who show that limit orders with high ex-ante adverse

selection risk are more likely to rest on the thin side of the book. A higher volume of buy orders

(bids) in the market creates buying pressure in the stock, and the price is more likely to rise. As

a result, the adverse selection risk of a resting buy limit order decreases and the value of having

the option to cancel the buy order also decreases. On the other hand, when volume on the ask side

increases, the selling pressure is more likely to result in a price fall. The adverse selection risk of a

resting buy order rises and the option to cancel the order becomes more valuable.

Drawing from these studies, we use order book pressure as a proxy for ex-ante adverse selection

and estimate the following regression for the subset of limit orders at the front of the queue at each

price level:

value of option to cancel = β0 + β1q
B0 + β2q

B1 + β3q
B2 + β4q

A0 + ϵ. (12)

If the value of the option to cancel increases when adverse selection increases, we expect an

increase in volume on the same side of the order (i.e., qB0 , qB1 , qB2) to reduce the value of the option

to cancel. Similarly, we expect an increase in volume on the opposite side of the order (i.e., qA0)

to increase the value of the option to cancel. Table 8 confirms this hypothesis and demonstrates

the option to cancel is most valuable when book pressure is going against the order (i.e., adverse

selection is high). Specifically, for all regressions, Table 8 reports a negative relation between the

31



queue size at any price level on the bid side and the value of the option to cancel. Similarly, for

all regressions, the value of the option to cancel has a positive relation with the queue size on the

opposing ask (qA0). In other words, when there is greater trading volume on the same side as the

resting limit order, the option to cancel holds a lower value. Conversely, if there is more volume

present on the opposite side of the limit order, the option to cancel carries a higher value.

[Insert Table 8]

5 Extensions

In this section, we describe possible extensions to the basic RL framework. Such enhancements

include the exploration of strategic decisions related to selecting between limit orders and mar-

ket orders, incorporating considerations such as the liquidity provider’s risk tolerance or existing

inventory levels, and determining order sizes.

5.1 Market vs. limit orders

A substantial body of theoretical work explores the dynamics behind traders’ preferences for mar-

ket versus limit orders. For instance, Kaniel and Liu (2006) reveals that, contrary to previous

assumptions, informed traders are more inclined to use limit orders rather than market orders. In

a fully dynamic framework, Bhattacharya and Saar (2022) show that the liquidity of the market

significantly influences informed traders’ decision to place limit orders in less liquid markets and

marketable orders in more liquid markets. From an empirical standpoint, Ranaldo (2004) demon-

strates that a trader’s decision on order aggressiveness is dependent on the market’s depth, spread,

and volatility. The flexibility of our proposed RL framework allows researchers to study a trader’s

order choice while also taking into account factors such as their existing inventory levels, risk

aversion, private information, as well as the prevailing market conditions.

The RL specification specified in section 2 can be modified to investigate the decision between

limit and market order submissions. Specifically, we can extend the action space to include an
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additional action that simultaneously cancels the resting limit order, and executes a market order

by crossing the spread, M . This augmentation results in three possible actions 1) to leave the

existing limit order (NA), 2) to cancel the existing limit order (C) or 3) to cancel the existing

limit order and immediately execute a market order (M). As before, we solve Equation (2) via the

Q-learning rule for all Q(s, a) where a ∈ {C,NA,M}. This modification allows us to estimate the

expected profit for each action, enabling us to compare the potential outcomes of leaving a resting

limit order or sending a market order in a given state.

Moreover, we can modify the RL framework to examine the order submission strategies of an

impatient trader who penalizes wait time until execution. Specifically, we can adjust the discount

factor γ in Equation 2. Recall that γ is a discount factor between 0 and 1. Values close to 1 apply

minimal discounting to future payoffs or rewards, while values close to 0 place little weight on future

payoffs (i.e., future payoffs are heavily discounted). Therefore, using a value close to zero places

little emphasis on rewards from limit order executions that occur in the distant future. This setup

effectively represents an impatient trader who underweights the potential payoffs from long-lived

limit orders.

5.2 Inventory and risk aversion

Inventory is also a crucial factor in managing limit orders. For example, Garriott et al. (2024)

demonstrate that inventory levels and adverse selection constraints similarly affect limit order sizes.

Consequently, a market maker holding a long position of 1,000 shares will place a higher value on

a limit sell order compared to a market maker with a short position of 1,000 shares, assuming both

market makers aim to minimize their inventory positions due to the associated risk.

We can adapt the existing RL framework to model the preferences of a risk-averse market

maker with inventory considerations through two adjustments. First, we include the market maker’s

inventory position in the state space. Second, we modify the reward function to account for the

profits related to the varying inventory position and any associated risk aversion. Specifically,

equation 6 can be modified to:
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R(⟨s, a⟩, s′) = (mids′ −mids)× Invs︸ ︷︷ ︸
Profit from carrying

inventory

+(mids′ − execPrices)× Execs,s′︸ ︷︷ ︸
Profit from execution

− λ(|Invs|)︸ ︷︷ ︸
Risk aversion

, (13)

where Invs is the market maker’s inventory position in state s, execPrices equals the price of

the limit order and Execs,s′ is the volume of the limit order that executes during the transition from

state s to s′. λ(|Invs|) is a risk aversion penalty applied to the market maker’s inventory position.

This penalty can be defined using various risk aversion utility functions due to the flexibility of the

RL framework.

5.3 Order size

In our RL framework, a risk-averse market maker (liquidity provider) trades a hypothetical order of

unit size. This assumption ensures that the order is not economically meaningful and thus does not

cause any permanent price impact. However, in practice, many limit orders are larger and do have

an associated price impact (see Brogaard et al. (2019) and Kwan et al. (2024)). Here, we extend

the RL framework by modifying the private variables in the state space to include the size of the

limit order. This modification allows us to capture any permanent price impact that arises from

submitting a limit order that is large enough to be economically meaningful.

While the estimation of expected profits via Q-learning remains unchanged, two modifications

are required in the process. First, instead of using hypothetical limit orders of unit size, the transi-

tion matrix should incorporate appropriately sized orders that can alter the queue sizes in the state

space. Second, the reward matrix must account for the volume executed, considering both partial

and complete executions.
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5.4 Private information

Many theoretical models assume that a trader has access to private information. Our reinforcement

learning (RL) framework can be adapted to capture this feature. Specifically, we can introduce a

private valuation variable to the state space, p, which represents the trader’s private information.

If we assume that the trader’s private information is valuable, this modification will lead to limit

buy orders having higher expected values when the private information indicates a potential price

increase, and lower expected values when it suggests a potential price decrease.

6 Conclusion

In modern markets, where limit order submissions and cancellations constitute an overwhelming

majority of trading activity, understanding the optimal management of limit orders is crucial.

Despite its importance, our understanding of the dynamics of the limit order book and order man-

agement strategies remains limited due to the complexity and high dimensionality of the problem

(see Parlour and Seppi (2008)).

To address this issue, we propose a recursive sequential framework for limit order management

which allows us to empirically uncover the most important features contribution to the value of a

limit order. In our framework, the expected value of a limit order is determined by current market

conditions and future market condition expectations. The liquidity provider exercises the option to

cancel a limit order if its expected value becomes negative.

Our findings reveal that the average expected value of a limit order resting at the best bid is

approximately one quarter of a tick. However, this value is influenced by various market factors.

Specifically, we demonstrate that queue size, order position, volatility, and order price significantly

impact the expected value of a limit order. Using Mean Decreased Accuracy (MDA) to rank the

importance of these variables, we find that price level is the most critical factor, followed by queue

sizes, volatility, and queue position.

Finally, we show that the endogenous option to cancel is economically meaningful: On average,
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this option to cancel represents 19% of a limit order’s total expected value. During periods of high

adverse selection risk, this option becomes even more valuable.
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Figure 1. Limit order book evolution

Figure 1 depicts the possible evolution of the limit order book from t0 to two possible future states at t1 (A and B).
The white rectangles represent the bid volume and the grey rectangles represent the ask volume. Prices are shown
on the x-axis, with the best bid at 13 and the best offer at 14 at t0. The trader’s limit order is in black and starts at
the back of the queue at t0 at price 12.
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Figure 2. Traders sequential decision making process

Figure 2 depicts the time line of the liquidity provider’s decision making process when monitoring their limit order.
At the end of each interval, the liquidity provider observes current market conditions and decides to leave or cancel
their order. This process repeats until the order is either executed or canceled.
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Figure 3. Boxplot of the expected value of a limit order

This figure plots a boxplot of the expected value of a limit order, estimated via our RL model. The figure contains
the estimates from all 20 sample stocks. The figure depicts a boxplot for three subsamples conditional on the price
level the limit order is resting at.
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Figure 4. Volatility, bid ask spreads and the expected value of a limit order

This figure shows the predicted effects of volatility on the quoted bid ask spread, breakeven bid ask spread, and the
expected value of a limit order. The top (bottom) figure in the panels depicts a low (high) volatility environment.
Panel A shows a constrained stock in which the breakeven bid ask spread is always less than the one tick-mandated
spread, even when volatility is high. In Panel B, when volatility is high, the breakeven bid ask spread increases
beyond the quoted bid ask spread and the liquidity provider widens the quoted spread. The expected compensation
to the liquidity provider (i.e., the difference between the quoted bid ask spread and the breakeven bid ask spread) is
depicted in green.
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Table 1
Summary statistics

This table reports summary statistics for our sample stocks. Our sample period covers July 3, 2017 to Septemeber 29,
2017 for 20 actively traded stocks on the ASX. We report the average bid ask spread in cents (Spread), the average
trade price in AUD (Price), and the average number of daily trades, order deletions and order submissions labelled
No. trades, No. deletions and No. submissions, respectively.

Spread Price No. trades No. deletions No. submissions

AMC 1.03 15.72 6970 9247 21142
AMP 1.01 5.11 3026 4279 9318
ANZ 1.08 29.51 11326 68791 88536
BHP 1.06 25.79 14268 20304 44994
BXB 1.04 9.40 5484 6686 16001
CBA 1.61 79.39 21498 33810 71510
CSL 2.59 129.87 16198 42372 70900
IAG 1.01 6.54 3530 5273 11142
MQG 1.97 87.20 13999 32589 57422
NAB 1.06 30.40 11714 69080 89394
NCM 1.12 21.34 10735 17888 36675
ORG 1.02 7.29 4637 6220 14191
QBE 1.08 11.14 7779 9758 22926
RIO 1.70 65.61 15955 30138 57912
STO 1.01 3.51 3255 4668 10058
SUN 1.02 13.61 7920 10994 24647
TLS 1.00 3.94 3999 4754 11186
WBC 1.08 31.62 13469 38652 62169
WOW 1.05 26.04 9208 16856 32784
WPL 1.08 29.27 11203 22482 41672
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Table 2
Summary statistics

This table reports the summary statistics on the expected value of an optimally managed limit order. The first row
reports summary statistics for orders placed at all price levels, whereas rows 2 to 4 report summary statistics for
limit orders conditional on their price level.

Order Location Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dev.

All prices -0.098 0.031 0.123 0.146 0.252 0.569 0.098
Best bid -0.098 0.153 0.258 0.262 0.339 0.569 0.134
One tick behind best bid 0.002 0.071 0.098 0.105 0.155 0.276 0.067
Two ticks behind best bid 0.011 0.023 0.029 0.031 0.044 0.074 0.010
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Table 3
Queue position and the expected value of a limit order

This table reports estimation results for the following OLS regression:

Qs = β1QueuePoss + State Fixed Effects+ ϵs,

where Qs is the expected value of a limit order estimated via our RL model. The independent variable is QueuePos,
with fixed effects controlling for all other variables. QueuePos takes the value of 0 if the order is at the front of the
queue and 1 if it is at the back of the queue. Columns 1, 2 and 3 present the regression results for subsamples in
which the order rests at the best bid, one tick behind the best bid and two ticks behind the best bid, respectively.
We report the mean coefficient across all sample stocks (Mean), along with the number of significantly positive (No.
+) and negative (No. -) coefficients at the 5% significance level, out of the full sample of 20 stocks. We also report
the mean R-squared value across the 20 regressions, along with the number of observations used in each regression.

Best bid 1 behind best bid 2 behind best bid

Mean -0.12 -0.05 -0.01
No. + 0 0 0
No. - 20 20 20

Mean R2 0.89 0.88 0.89
No. obs. per stock 5,625 5,625 5,625
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Table 4
Queue size and the expected value of a limit order

This table reports estimation results for the following OLS regression:

Qs = β1q
B0
s + β2q

B1
s + β3q

B2
s + β4q

A0
s + State Fixed Effects+ ϵ,

where Qs is the expected value of a limit order estimated via our RL model, qBi is the queue size on the best bid
at price level i and qA0 is the queue size on the best ask. qB0 , qB1 , qA0 take values from 0 to 4 to depict the queue
size quintile, extremely short, short, normal, long, and extremely long, respectively. qB2 takes values from 0 to 2 to
represent the three queue size terciles (short, normal long) at the price two ticks below the best bid. Columns 1, 2
and 3 present the regression results for subsamples in which the order rests at the best bid, one level behind the best
bid and two levels behind the best bid, respectively. We report the mean coefficient across all sample stocks (Mean),
along with the number of significantly positive (No. +) and negative (No. -) coefficients at the 5% significance level,
out of the full sample of 20 stocks. We also report the mean R-squared value across the 20 regressions, along with
the number of observations used in each regression.

Best bid 1 behind best bid 2 behind best bid

qB0 Mean 0.06 -0.05 -0.02
No. + 19 0 0
No. - 0 20 20

qB1 Mean 0.05 0.01 -0.01
No. + 18 14 0
No. - 2 5 20

qB2 Mean 0.04 0.03 0.00
No. + 14 16 12
No. - 3 4 6

qA0 Mean -0.04 0.01 0.01
No. + 0 19 20
No. - 20 0 0

Mean R2 0.88 0.89 0.83
No. obs. per stock 5,625 5,625 5,625
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Table 5
Volatility and the expected value of a limit order

This table reports estimation results for the following OLS regression:

Qs = β1V olatilitys + State Fixed Effects+ ϵs,

where Qs is the expected value of a limit order estimated via our RL model for orders at the best bid. The independent
variable is V olatility, with fixed effects controlling for all other variables. Volatility is calculated as the log of the
highest traded price minus the log of the lowest traded price over the last 100 trades. V olatility takes the value of 0,
1, or 2 for low, medium, and high volatility states, respectively. Column 1 presents the regression results for all stocks.
Column 2 (3) presents results on the subsample of stocks that are most (least) tick constrained. We report the mean
coefficient across all sample stocks (Mean), along with the number of significantly positive (No. +) and negative (No.
-) coefficients at the 5% significance level, out of the full sample of 20 stocks. We also report the mean R-squared
value across the 20 regressions, the number of stocks in each sample, along with the number of observations used in
each regression.

All stocks Constrained Unconstrained

Mean 0.38 -2.39 5.82
No. + 9 0 5
No. - 11 5 0

Mean R2 0.86 0.86 0.87
No. stocks 20 5 5
No. obs. per stock 5,625 5,625 5,625
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Table 6
Relative importance of variables

For each variable, k, that partially defines the market state (i.e., Price level, Queue position, queue size at best bid
(Bid size 1 ), queue size one level behind best bid (Bid size 2 ), queue size two levels behind best bid (Bid size 3 ),
Ask size, Volatility), this table reports the Mean Decreased Accuracy (MDA) estimated as follows:

MDAk =

S∑
s=1

(
|(Q(s,NA)−Q(skR, NA))|

Q(s,NA)

)
/S,

where Q(s,NA) is the expected value of a limit order while in state s and taking action NA, and Q(skR, NA) is the
estimate associated with state sR when variable k is randomized. For each variable k, we repeat this process 100
times and report the mean and standard deviation of the MDA.

Price level Queue position Bid size 1 Bid size 2 Bid size 3 Ask size Volatility

Mean 2.54 0.20 1.22 1.17 0.68 0.68 0.56
St. dev. 1.34 0.07 0.34 0.71 0.48 0.19 0.33
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Table 7
Summary statistics for the value of the option to cancel

Table 7 reports the summary statistics on the expected value of the option to cancel a limit order. The first row
reports summary statistics for orders placed at all price levels, whereas rows 2 to 4 report summary statistics for
limit orders conditional on their price level.

Order Location Min. 1st Qu. Median Mean 3rd Qu. Max. St Dev.

All prices 0.000 0.003 0.008 0.024 0.019 0.483 0.052
Best bid 0.000 0.004 0.012 0.049 0.051 0.483 0.081
One tick behind best bid 0.001 0.005 0.010 0.017 0.020 0.161 0.020
Two ticks behind best bid 0.000 0.002 0.004 0.007 0.009 0.059 0.007
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Table 8
The value of the option to cancel

This table reports estimation results for the following OLS regression:

value of option to cancel = β0 + β1q
B0 + β2q

B1 + β3q
B2 + β4q

A0 + ϵ,

where the dependent variable is the option value to cancel a limit order estimated via our RL model, qBi is the queue
size on the best bid at price level i and qA0 is the queue size on the best ask. qB0 , qB1 , qA0 take values from 0 to
4 to depict the queue sizes, extremely short, short, normal, long, and extremely long, respectively. qB2 takes values
from 0 to 2 to represent the three queue size terciles (short, normal long) at the price two ticks below the best bid.
Columns 1, 2 and 3 present the regression results for subsamples in which the order rests at the best bid, one level
behind the best bid and two levels behind the best bid, respectively. We report the mean coefficient across all sample
stocks (Mean), along with the number of significantly positive (No. +) and negative (No. -) coefficients at the 5%
significance level, out of the full sample of 20 stocks.

Best bid 1 behind best bid 2 behind best bid

qB0 Mean -0.034 -0.015 -0.019
No. + 0 1 0
No. - 20 19 20

qB1 Mean -0.044 -0.032 -0.021
No. + 1 0 2
No. - 19 20 18

qB2 Mean -0.034 -0.031 -0.028
No. + 1 0 0
No. - 19 20 20

qA0 Mean 0.014 0.025 0.035
No. + 20 20 20
No. - 0 0 0

Mean R2 0.16 0.24 0.34
No. obs per stock 625 625 625
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7 Appendix

A Transition Matrix

Transition matrix for action NA

Figure A.1 illustrates the section of the transition matrix, T , when the action is NA (i.e.,

leave the limit order), which is a S × S matrix that requires empirical estimation. The states

s1(0), . . . , sn(0) reflect the n possible states when the trader has no inventory and is working an

order. The states s1(1), . . . , sm(1) reflect the m possible states the market can exist, when the trader

has a long position and is no longer working a limit order. sC(0) reflects the absorbing state once

the trader cancels their order.

Figure A.1. Transtion matrix for NA

Figure A.1 depicts the S × S transition matrix for the experience tuples in which the action is to leave the resting
limit order, or do nothing, NA. States si(0) represent states when the trader is working their limit order, while states
sj(1) represent states when the trader’s order has been executed. The state sC(0) represents the absorbing order
cancellation state.

Future State

C
u
rr
en
t
st
a
te

w
it
h

a
ct
io
n
N
A



s1(0) s2(0) ... sn(0) s1(1) ... sm(1) sC(0)

s1(0) p1,1 . . . p1,n p1,n+1 . . . p1,n+m p1,n+m+1

s2(0)

...
. . .

...
. . .

...
Unexecuted Executed

sn−1(0) pn−1,1 pn−1,n+1

sn(0) pn,1 . . . pn,n pn,n+1 pn,n+m pn,n+m+1

s1(1) 0 . . . 0 0 pn+1,n+1 . . . pn+1,n+m 0
...

... Prohibited 0
... Long

...
...

sm(1) 0 0 0 0 pn+m,n+1 . . . pn+m,n+m 0

sC(0) 0 . . . 0 0 0 . . . 0 1



The top left quadrant of the transition matrix, labeled “Unexecuted”, contains the transition

probabilities for a limit order that does not execute during the transition from one state to the

next. These transition probabilities reflect the changes in market conditions and the movement

of the limit order within the order book. For example, they capture the likelihood of the limit

order advancing in the queue or how other market participants might respond to current market

conditions. We estimate these probabilities empirically using equation (5).
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The block of the transition matrix titled “Executed” contains the probability of limit order

execution during the state transition. In our setup, once an order is executed, the trader has no

remaining limit orders. Consequently, the trader must transition to one of m positive inventory

states, sj(1), where j represents different possible states based on the public information reflected

in the order book variables. Again, we estimate these probabilities empirically via (5).

After execution, the trader remains in one of the m positive inventory states and cannot submit

another order. To ensure the trader does not hold another limit order while being long and remains

in a positive inventory state, we define the “Prohibited” block in Figure A.1 to contain only zeros.

The block labeled “Long” captures the transition probabilities for a trader who is long in one

market state and transitions to another market state while remaining long; these probabilities are

also estimated empirically via equation (5).

The final column of the matrix reports the probability that the trader transitions to the

absorbing state by canceling their order. The absorbing nature of the state is represented by the

transition probability of 1 in the bottom right of Figure A.1. If the trader is currently in the

absorbing cancel state, the probability of remaining in that state in the subsequent period is 1.

Given that the action for this section of the matrix is NA, we may expect the probability to enter

the absorbing cancel state to be zero for all market states when the trader has a resting limit order.

However, we assume that if the resting limit order transitions into an undefined state (more than

three ticks from the best bid), the trader’s action NA is overridden, and the order is canceled.

Therefore, there can be a non-zero probability of the order being canceled, which we estimate

empirically.

Transition matrix for action C

Figure A.2 illustrates the S×S section of the transition matrix, T , when the action is to cancel

the resting limit order (C). Unlike the section of the transition matrix when the action is NA, this

section of the transition matrix is deterministic and does not require any empirical estimation of

the transition probabilities. If the trader cancels their limit order, they transition to the absorbing

cancel state with certainty. Therefore, the probability of entering the absorbing cancel state, which

is captured in the final column of Figure A.2, is 1 for all current states where the trader has a resting
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limit order. Further, once the order is canceled, the market cannot transition to any state where

the limit order still exists or executes. Thus, the “Unexecuted” and “Executed” blocks contain only

zeros.

To ensure the trader only has one resting limit order at a time, we impose a restriction that

any state where the trader has an inventory position or has already canceled their order cannot

have another resting order. Due to this restriction, taking the action to cancel an order in a state

where the trader has a long inventory position, or has canceled their order, is prohibited and has a

zero probability of occurring.

Figure A.2. Transition matrix for C

Figure A.2 depicts the S × S transition matrix for the experience tuples in which the action is to cancel the resting
limit order, C. States si(0) represent states when the trader is working their limit order, whereas states sj(1) represent
states when the trader’s order has been executed. State sC(0) represents the absorbing order cancellation state.
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s1(0) s2(0) ... sn(0) s1(1) ... sm(1) sC(0)

s1(0) 0 . . . 0 0 . . . 0 1

s2(0)

...
. . .

...
. . . 1

Unexecuted Executed 1
sn−1(0) 1
sn(0) 0 . . . 0 0 0 1

s1(1) 0 . . . 0 0 0 . . . 0 0
...

... Prohibited 0 Prohibited 0
sm(1) 0 0 0 0 0 . . . 0 0



Full transition matrix

In Figures A.1 and A.2 we present two S × S sections of the full 2S × S transition matrix,

T . Specifically, Figure A.1 (A.2) is a transition matrix for all experience tuples when the action

is NA (C). To generate the full transition matrix, T , we vertically stack the 2 subsections, each

with dimension S × S, resulting in the full transition matrix of dimension 2S × S. For notational

convenience, we refer to T (⟨s, a⟩, s′) as the probability a limit order transitions to state s′ given the

trader makes action a while the limit order is in state s.
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B Immediate Reward

Figure B.3 shows the matrix of immediate rewards for all experience tuples that occur when the

action is to do nothing, NA. If the trader’s limit order remains unexecuted during the transition, the

immediate reward is zero, as indicated in the upper left quadrant titled “Unexecuted”. Conversely,

if the trader’s limit order executes, the immediate reward corresponds to the profit generated. This

profit is empirically calculated using (6) and is defined as the difference between the execution price

and the midpoint in the future state s′. These profits are shown in the block of Figure B.3 titled

“Executed”. The block of Figure B.3 titled “Long” contains the immediate profits that occur when

the trader is long and the market transitions from one state to the next. We empirically estimate

these immediate profits via (6), and they reflect any profit generated via a change in midpoint over

a state transition.

Figure B.3. Immediate reward matrix

Figure B.3 depicts the S × S immediate reward matrix for transitioning from one state to the next. States si(0)
represent states when the trader is working their limit order, whereas states sj(1) represent states when the trader’s
order has been executed. State sC(0) represents the absorbing order cancellation state.
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s1(0) s2(0) ... sn(0) s1(1) ... sm(1) sC(0)

s1(0) 0 . . . 0 r1,n+1 . . . r1,n+m 0

s2(0)

...
. . .

...
. . . 0

Unexecuted Executed 0
sn−1(0) 0 rn−1,n+1 0
sn(0) 0 . . . 0 rn,n+1 rn,n+m 0

s1(1) 0 . . . 0 0 rn+1,n+1 . . . rn+1,n+m 0
...

... Prohibited 0
... Long

... 0
sm(1) 0 0 0 0 rn+m,n+1 . . . rn+m,n+m 0

sC(0) 0 0 0 0 0 . . . 0 0



When the action is NA, the limit order can execute or there can be an existing long position.

Either scenario can result in a non-zero immediate reward. In contrast, when the trader cancels

their order (action C), the immediate reward must be zero, as no limit orders are executed and

there is no inventory position. Consequently, the S × S immediate reward matrix for the action C

contains only zeros.
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C Illustrative example

In this appendix, we provide a simple example to illustrate the empirical estimation process of our

framework via an iterative learning rule known as Q-learning defined as:

Qt+1(s, a) = Qt(s, a) + α
(
E[R(s, a)] + γ

∑
s′∈S

T (⟨s, a⟩, s′)max
a

Qt(s
′, a)−Qt(s, a)

)
, (14)

where α is the learning rate and t is the iteration number. The Q-learning rule is a value iteration

update. Watkins and Dayan (1992) show that the Q values will converge to Q∗ with probability 1

if all actions are repeatedly sampled in all states and the action-values are represented discretely.

To simplify this illustrative example, we first define a simplified state-action space. We then

illustrate how to empirically estimate our simplified transition probability matrix and immediate

reward matrix. We conclude with a demonstration of the Q-learning rule.

C.1 State action space

Similar to the model we formulated in Section 2, in this illustrative example, our trader has two

available actions. The first action is to cancel the existing limit order (C). The second action is to

do nothing (NA), allowing the existing limit order to remain in the queue. However, to simplify

our example, we reduce the state space by considering only the queue size at the best bid (qB0)

and best ask (qA0), ignoring the queue sizes at levels behind the best bid (qB1 ,qB2). Moreover, we

discretize queue size into only two groups, large and small.

To further reduce dimensionality, we reduce the private state variable, queue position (Q) to

two possible states: front and back, representing whether the order is in the front half or back half

of the queue, respectively. These simplifications result in a state space with 8 possible states when

the trader has no inventory and is executing a limit order (m), 4 possible market states when the

trader has an inventory position and is no longer executing an order (n), and 1 absorbing state
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when the trader cancels their order (o). Altogether, our setup consists of a total of 13 possible

unique market states (S ). More formally, m = 8, n = 4 o = 1 and S = 13. We define each state as

follows:

sjk(I) = [I, L,Q, qB0 , qA0 ] =



sf1(0) = [0, 0, front, small, small]

sf2(0) = [0, 0, front, small, large]

sf3(0) = [0, 0, front, large, small]

sf4(0) = [0, 0, front, large, large]

sb1(0) = [0, 0, back, small, small]

sb2(0) = [0, 0, back, small, large]

sb3(0) = [0, 0, back, large, small]

sb4(0) = [0, 0, back, large, large]

sX1 (1) = [1, X,X, small, small]

sX2 (1) = [1, X,X, small, large]

sX3 (1) = [1, X,X, large, small]

sX4 (1) = [1, X,X, large, large]

sC(0) = [0, X,X,−,−]

(15)

where k is an index of the public market state, which is reflected by qB0 and qA0 . j takes on

the value of f (b) if the limit order is at the front (back) half of the queue, a value of X if the

trader has an inventory position and no limit order, or a value of C if the trader has canceled their

order. The X term captures our restriction that no additional limit orders can be submitted once

the trader has a positive inventory position or cancels their order. I captures the trader’s current

inventory position and L ∈ {0, X} depending on whether the trader has an order resting at the best

58



bid, or their order is canceled of executed.21 For each of the 8 states, where the trader is working

a limit order, the trader has the choice of making the action to do nothing, NA, or cancel their

existing order, C. For the states where the trader is long or has canceled their order, they can only

make action NA. With the state action space defined, the input variables for (14) are the transition

matrix and immediate reward matrix, which we empirically estimate.

C.2 Transition probabilities

T (⟨s, a⟩, s′) represents the probability that the limit order transitions the market to state s′ under

action a while in state s. For example, T (⟨sf1(0), NA⟩, sf2(0)) is the probability that a limit order at

the front of the queue which exists when the best bid and best ask both have short queue lengths

transitions to a subsequent period where the order is still at the front half of a queue and it remains

unexecuted, but market conditions have changed such that the bid volume is small and the ask

volume is now large.

We compute these transition probabilities empirically using the MLE estimate defined by (5).

For example, to estimate T (⟨sf1(0), NA⟩, sf2(0)), we observe the subsample of observations that

capture state sf1(0) (i.e., the observations that have small queue sizes on both the bid and the ask

and the limit order is at the front half of the bid). Next, we compute the proportion of observations

that transition to the subsequent state sf2(0), which is reflected by the limit order still remaining

in the top half of the book, but under new market conditions (i.e., the bid queue size is small and

the ask queue size is large). Table C.4, reports empirical estimates of the transition probabilities

using data defined in Section 3.

Figure C.4 has a distinct structure. The upper left block of the transition matrix represents

states when the trader has no inventory and completes the action of do nothing, NA. This area

has a strong diagonal, which reflects that an uncanceled limit order is most likely to remain in the

same state in the subsequent 100ms period. For example, observing the transition probabilities for

the state sf1(0), which reflects a resting limit order at the front half of the queue when the queue

21In this simplified example, L is redundant because the order can only be placed at the best bid. However, we
have included L for consistency with our main analysis, in which the order can rest at multiple price levels.
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Figure C.4. Transition matrix

Figure C.4 depicts the SA × S transition matrix for the experience tuple in which the action is to leave the resting
limit order, NA, or cancel the order, C. States si(0) represent states when the trader is working their limit order,
whereas states sj(1) represent states when the trader’s order has been executed. State sC(0) represents the absorbing
order cancellation state.
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s
f
1 (0) s

f
2 (0) s

f
3 (0) s

f
4 (0) sb1(0) sb2(0) sb3(0) sb4(0) sX1 (1) sX2 (1) sX3 (1) sX4 (1) sC(0)

1 sf1 (0) 0.86 0.02 0.02 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.01

2 sf2 (0) 0.03 0.82 0.00 0.02 0.00 0.02 0.00 0.00 0.01 0.07 0.01 0.01 0.01

3 sf3 (0) 0.01 0.00 0.89 0.03 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.00 0.02

4 sf4 (0) 0.00 0.01 0.02 0.90 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.03 0.02

5 sb1(0) 0.06 0.00 0.01 0.00 0.87 0.03 0.02 0.00 0.01 0.00 0.01 0.00 0.01

6 sb2(0) 0.00 0.07 0.00 0.01 0.03 0.84 0.00 0.02 0.01 0.01 0.01 0.01 0.01

7 sb3(0) 0.00 0.00 0.02 0.00 0.03 0.01 0.90 0.03 0.00 0.00 0.00 0.00 0.02

8 sb4(0) 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.92 0.00 0.00 0.00 0.00 0.02

9 sX1 (1) 0.94 0.03 0.03 0.00 0
10 sX2 (1) 0.04 0.91 0.01 0.04 0
11 sX3 (1) 0 0.03 0.01 0.92 0.04 0
12 sX4 (1) 0.01 0.03 0.03 0.94 0

13 sC(0) 0 0 1

14 sf1 (0) 1

15 sf2 (0) 1

16 sf3 (0) 1

17 sf4 (0) 0 0 1

18 sb1(0) 1

19 sb2(0) 1

20 sb3(0) 1

21 sb4(0) 1

22 sX1 (1) 0
23 sX2 (1) 0
24 sX3 (1) 0 0 0
25 sX4 (1) 0

26 sC(0) 0 0 0



sizes on the best bid and best ask are small, there is an 86% chance the subsequent state will be

the same. However, there is also a 2% chance the subsequent state is either sf2(0) or sf3(0), which

implies either 1) the best ask has grown to become large and the market has transitioned to sf2(0),

or 2) the best bid has grown and the market has transitioned to sf3(0).

The section of the transition matrix for transitions from state si(0) to state sj(1) with action

NA, reports the probabilities that a resting limit order executes during the transition to the subse-

quent state. We observe that resting limit orders at the front of the queue (rows 1-4) have a higher

probability of execution than resting limit orders at the back of the queue (rows 5-6). Further, the
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probability of execution for sf2(0) is 0.1 (0.01 + 0.07 + 0.01 + 0.01), which is higher than the prob-

ability of execution for any of the other states with a resting limit order. State sf2(0) occurs when

the trader has a resting limit order at the front half of the best bid and the bid queue size is small,

while the ask queue size is large. Cao et al. (2009) demonstrate that when the ask volume is larger

than the bid volume, aggressive sell orders are more likely to occur and prices will decrease in the

near future. Therefore, it is consistent with the literature that the highest probability of execution

occurs for state sf2(0). Moreover, the strong diagonal component of this section of the transition

matrix reflects that when a resting limit order executes during the transition to the subsequent

period, it is most likely that the state of the order book in the subsequent period is in the same

state as the current period.

Rows 9 to 12 of Table C.4 represent the transition probabilities when the trader has an inven-

tory position. The left block of the rows take the value of zero to ensure the trader does not have

additional limit orders once a long inventory position occurs. The middle block captures the prob-

ability the trader transitions to a subsequent market state with their inventory position remaining

unchanged. Given the trader has no resting limit orders, we estimate these transition probabilities

using only the public state variables, which in this example are the size of the best bid and ask

(qB0 and qA0).

As discussed in Appendix A, we do not need to estimate transition probabilities when the

action is C. When the action is C, the transition probability to any state with a resting limit is

0 and the transition probability to the absorbing state is 1. Moreover, if the trader has a long

position, or is already in the absorbing state, they are prohibited to make action C, as they have

no order to cancel. To uphold this constraint, rows 22 to 26 all sum to zero, which ensures there is

a 0 probability that action C occurs when in these states.

We note that in rows 1-8 of Figure C.5 we report non-zero values for the probability to transition

to the absorbing order cancellation state, sC(0), despite the action being NA. These non-zero values

maintain our assumption that if the market transitions to a state space where the resting limit is not

recognized, the action NA is over ruled by action C. Specifically, in this case, the state space only

contains limit orders at the best bid. Thus, if the best bid increases during the market transition,
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so that the existing limit order is no longer at the best bid, the trader will be forced to cancel the

order.

C.3 Immediate rewards

Next, we require the immediate reward for all possible transitions via (6). To empirically estimate

the immediate reward when the trader has a long position, we take the average change in midpoint

for the subset of observations that capture the correct transition from one state to the next. For

example, to estimate R(⟨sX1 (1), NA⟩, sX1 (1)), we create a subset of observations from our full sample

of data by using observations when the market is in an initial state of sX1 (1) (i.e., the queue size of

the best bid and ask are both small) and the subsequent market state is the same, sX1 (1). For this

subset of observations, we then take the average of (6), which is the average change in midpoint

price.

To estimate the immediate reward for the execution of a limit order, we use a similar approach.

For example, to estimate the immediate reward for R(⟨sf1(0), NA⟩, sX1 (1)) we create a subset of

observations that only include observations where the trader is in state sf1(0) (i.e., the trader has a

resting limit order at the front of the best bid during market conditions where the size of the best

bid and ask are small) and transitions to the subsequent state sX1 (1) (i.e., the trader has a long

position when the best bid and ask queue sizes are small). For this subset of observations, we use

the average immediate reward, computed via (6), which is the midpoint price in the new state less

the limit order’s execution price.

Figure C.5 reports the empirically estimated immediate reward for all possible transitions.

Figure C.5 only reports non zero values when the trader transitions to a long position. This seg-

mentation ensures the trader only receives an immediate reward when a limit order is executed or

a the trader has a long position. Otherwise, the trader receives no immediate reward.

The reported immediate rewards are the potential gains or losses that immediately occur during

the transition from one market state to the next. For example, we report the immediate rewards

for state sf1(0) in row 1. When the limit order in state sf1(0) executes and the trader transitions to
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Figure C.5. Immediate reward matrix

Figure C.5 depicts the SA × S transition matrix for the experience tuple in which the action is to leave the resting
limit order, NA, or cancel the order, C. States si(0) represent states when the trader is working their limit order,
whereas states sj(1) represent states when the trader’s order has been executed. State sC(0) represents the absorbing
order cancellation state.
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1 (0) s
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2 (0) s

f
3 (0) s

f
4 (0) sb1(0) sb2(0) sb3(0) sb4(0) sX1 (1) sX2 (1) sX3 (1) sX4 (1) sC(0)

1 sf1 (0) 0.32 0.25 −0.19 −0.05 0

2 sf2 (0) −0.30 0.47 −0.49 −0.00 0

3 sf3 (0) 0.20 0.16 0.43 0.31 0

4 sf4 (0) 0 −0.40 0.43 −0.36 0.47 0

5 sb1(0) -0.07 −0.02 −0.24 −0.09 0

6 sb2(0) −0.45 0.33 −0.49 −0.04 0

7 sb3(0) −0.18 −0.15 -0.15 −0.14 0

8 sb4(0) −0.50 0.23 −0.49 0.16 0

9 sX1 (1) 0 0.23 −0.20 0.08 0
10 sX2 (1) −0.23 0 −0.84 −0.25 0
11 sX3 (1) 0 0.20 0.84 0 0.24 0
12 sX4 (1) −0.08 0.25 −0.24 0 0

13 sC(0) 0 0 0

14 sf1 (0) 0

15 sf2 (0) 0

16 sf3 (0) 0

17 sf4 (0) 0 0 0

18 sb1(0) 0

19 sb2(0) 0

20 sb3(0) 0

21 sb4(0) 0

22 sX1 (1) 0
23 sX2 (1) 0
24 sX3 (1) 0 0 0
25 sX4 (1) 0

26 sC(0) 0 0 0



state sX1 (1), the immediate reward is 0.32, which implies the trader makes an immediate gain of

0.32 ticks, on average.

C.4 Estimation

We initialize our Q values, or long run expected profits forecasts, for each experience tuple to

zero. Using the Q-learning rule defined by (14), we update our Q values for each experience tuple
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recursively. For example, we update our estimate for Q(sf1(0), NA) for the first iteration via:

Q1(s
f
1(0), NA) = E[R(sf1(0), NA)] + γ

∑
s′∈S

T (⟨sf1(0), NA⟩, s′)max
at+1

Qt(s
′, at+1), (16)

where the first term is the immediate profit for taking action NA which we compute via (7). The

second term is the expected future profit conditional on taking action NA now. We observe the

second term multiplies the probability of arriving in future state s′ with the maximum Q value the

trader can achieve by picking the optimal action at+1 while in state s′. Because we have initialized

all Q values to zero, on the first iteration, the maxat+1 Qt(s
′, at+1) term in (16) will be zero for all

s′ and the trader will be indifferent to all choices of at+1. Thus, the second term of (16) is zero and

we update our estimate for Q(sf1(0), NA) for the first iteration as follows:

Q1(s
f
1(0), NA) = E[R(sf1(0), NA)] +

∑
s′∈S

T (⟨sf1(0), a⟩, s
′)×R(⟨sf1(0), a⟩, s

′)

= (0.05× 0.32) + (0× 0.25) + (0.01×−0.19) + (0×−0.05) + · · ·+ 0

= 0.0141

Applying the same process, we update the associated Q values for all experience tuples, which

we report in Column 1 of Table C.1. Given the Q values were all initialized to 0, these first iteration

values are the expected immediate profits.

On iteration two, the input values for our learning rule remain the same except for the Q value

estimates, which are updated to the new values estimated in iteration 1. As a consequence, unlike in

iteration 1, the maxat+1 Qt(s
′, at+1) term in (16) will no longer be zero for all s′ and the trader will

have the option to pick the optimal action at+1 conditional on the future state s′ they transition

to. For example, for the experience tuple ⟨sf1(0), NA⟩, the trader makes action NA, which can

transition the trader to the future state sf1(0) with probability 0.86. In this future state, the trader

can make action NA or action C. Given the current Q value estimate for taking action NA while

in state sf1(0) is 0.0141, while the current Q value estimate for taking action C while in state sf1(0)

is 0, if the trader transitions to future state sf1(0), it is optimal for the trader to take future action

NA as this action results in a higher Q value.
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An alternative scenario when it is not optimal for the trader to make future action NA occurs

when the trader transitions to future state sb1(0), which occurs with probability 0.02. In this state,

the trader’s future optimal action now differs, as it is optimal to take future action C and cancel.

If the trader makes future action C while in future state sb1(0), the associated current Q value, or

long term profit, is zero. Whereas, if the trader makes future action NA, while in future state sb1(0),

the associated current Q value, or long term profit, is -0.0031.

This ability for the trader to select the optimal action when in a future state is the critical com-

ponent of a reinforcement learning algorithm, allowing us to model a traders optimal management

over the life-cycle of a limit order. Applying this logic, we update our second iteration estimate for

Q(sf1(0), NA) as follows:
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Q1(s
f
1(0), NA) = E[R(sf1(0), NA)] + γ

∑
s′∈S

T (⟨sf1(0), NA⟩, s′)max
at+1

Qt(s
′, at+1)

= E[R(sf1(0), NA)]

+ γT (⟨sf1(0), NA⟩, sf1(0))max{Qt(s
f
1(0), NA), Qt(s

f
1(0), C0)}

+ γT (⟨sf1(0), NA⟩, sf2(0))max{Qt(s
f
2(0), NA), Qt(s

f
2(0), C0)}

+ γT (⟨sf1(0), NA⟩, sf3(0))max{Qt(s
f
3(0), NA), Qt(s

f
3(0), C0)}

+ γT (⟨sf1(0), NA⟩, sf4(0))max{Qt(s
f
4(0), NA), Qt(s

f
4(0), C0)}

+ . . .

+ γT (⟨sf1(0), NA⟩, sX3 )Qt(s
X
3 , NA)

+ γT (⟨sf1(0), NA⟩, sX4 )Qt(s
X
4 , NA)

= 0.0141

+ 0.99
(
0.86×max(0.0141, 0)

)
+ 0.99

(
0.02×max(0.0201, 0)

)
+ 0.99

(
0.02×max(0.0106, 0)

)
+ 0.99

(
0×max(0.0141, 0)

)
+ . . .

+ 0.99
(
0.01× 0.0240

)
+ 0.99

(
0.00×−0.005

)
= 0.0270

Table C.1 reports the progression of our Q values estimates for each iteration of the learning

rule. At iteration 200, the Q value estimates exhibit a minor deviation of less than 0.0001 from the

value computed in the previous iteration. This stability indicates the Q-learning rule has converged

and we can terminate the iterative process of the learning rule. We can observe the learning process

of our estimation method via the progression of Q(sb1(0), NA). In iteration 1, Q(sb1(0), NA) takes on

a value of -0.0031, but at termination, Q(sb1(0), NA) is now positive at 0.0763. Recall that iteration

1 reports the expected immediate value if the order executes in the next transition, whereas our

final iteration reports the expected value if the order is optimally managed up until execution or

cancellation. Q(sb1(0), NA) reflects the scenario in which the trader leaves an order at the back half
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of the limit order book when both the bid and ask queue sizes are small. If this order was to execute

immediately, the order likely faces adverse selection by a large incoming order, hence a negative

immediate value. In contrast, if the order does not immediately execute, the trader can wait until

favorable market conditions arrive, thereby giving a long term positive expected value.

Table C.1
Q-learning rule

This table shows the Q value estimates of the conditional expected value of a limit order for all experience tuples at
the end of each iteration of the Q-learning rule defined by (14). The bottom row labeled Difference, reports the sum
of the total change in estimates after each iteration.

Iteration 1 Iteration 2 Iteration 3 . . . Iteration 199 Iteration 200

Q(sf1 (0), NA) 0.0141 0.0270 0.0387 0.1492 0.1492

Q(sf2 (0), NA) 0.0201 0.0357 0.0477 0.0737 0.0737

Q(sf3 (0), NA) 0.0106 0.0210 0.0311 0.1868 0.1868

Q(sf4 (0), NA) 0.0141 0.0271 0.0389 0.1686 0.1686

Q(sb1(0), NA) -0.0031 -0.0019 -0.0008 0.0763 0.0763

Q(sb2(0), NA) -0.0065 -0.0050 -0.0038 0.0125 0.0125

Q(sb3(0), NA) 0.0000 0.0002 0.0006 0.0622 0.0622

Q(sb4(0), NA) 0.0000 0.0003 0.0008 0.0527 0.0527
Q(sX1 (1), NA) 0.0009 0.0016 0.0022 -0.0025 -0.0026
Q(sX2 (1), NA) -0.0276 -0.0522 -0.0742 -0.2657 -0.2657
Q(sX3 (1), NA) 0.0240 0.0456 0.0650 0.2287 0.2287
Q(sX4 (1), NA) -0.0005 -0.0011 -0.0017 -0.0230 -0.0230
Q(sC(0), NA) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sf1 (0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sf2 (0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sf3 (0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sf4 (0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sb1(0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sb2(0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sb3(0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sb4(0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Difference 0.1215 0.1024 0.0915 0.00017 0.00015

Table C.2 reports the converged Q value estimates for the states where the trader has a choice

to either do nothing, NA, or cancel their order, C. The trader’s optimal action is the action that

gives the highest Q value. For example, when the market is in state s1 and the trader has a limit

order at the front half of the queue, the long run expected value is 0.1492 if the trader chooses to

do nothing, and the long run expected profit is 0 if the trader chooses to cancel their order. Given

these two scenarios, it is optimal for the trader to leave their order at the front half of the queue

as this action provides a higher long term expected value.
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Table C.2
Q-value estimates

Table C.2 reports the conditional expected value estimates for a limit order resting in four possible different market
states (s1,..,s4) for the actions to leave the order (NA) or cancel the order (C).

Front half Back half

NA C NA C
s1 (small bid, small ask) 0.1492 0 0.0763 0
s2 (small bid, big ask) 0.0737 0 0.0125 0
s3 (big bid, small ask) 0.1868 0 0.0622 0
s4 (big bid, bid ask) 0.1686 0 0.0527 0
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1 Introduction

Passive ownership of corporate bonds is on the rise as the popularity of exchange-traded

funds (ETFs) has gained traction over the past 20 years. These passive funds differ from

traditional corporate bond investors because they follow certain bond indices and aim to

minimize tracking errors. Whether the rising ownership of corporate bonds by passive funds

enhances or reduces the ease of secondary market transactions is widely debated among

academia, policymakers, and market participants but has not reached a consensus yet.

In this paper, we examine a particular type of corporate bond transactions, bond lending

and shorting, and ask whether an increase in passive ownership makes it easier or more

difficult to borrow bonds and short them. We do so because bond lending and shorting is a

grossly understudied area, and we do not have a clear understanding of why investors borrow

bonds and short them. Market participants’ motivation for shorting bonds, in turn, influ-

ences how they react to the increased passive ownership. Therefore, we aim to understand

how increased ownership influences both the supply of lendable bonds and the demand.

To measure the impact of passive ownership on lending outcomes, we estimate panel

regressions of lending outcome variables, such as lendable supply, quantity of bonds on loan,

and borrowing fees. To identify exogenous shocks to passive ownership, we include in the

regression high-dimensional fixed effects to soak up any variation in firm-level unobservables

driving both the outcome and passive ownership. With issuing firm-by-quarter fixed effects,

any time-varying firm-level fundamental information is accounted for. In addition, we include

bond fixed effects to control for time-invariant characteristics of bonds, such as the bond’s

covenants and seniority, as well as other time-varying bond-level controls.

In our main estimates, we find that increased passive ownership increases lending supply.

This result is expected because passive funds are natural security lenders, as in any asset

market. However, we also find that the increase in ownership reduces the demand to borrow

bonds. The demand decrease dominates the supply increase, and thus in the new equilibrium,

we observe lower fees and lower quantity of bonds lent. Specifically, we find a one-standard-

deviation increase in passive ownership significantly decreases the fee by 0.018 percentage

points, or 13.85% of its inter-quartile range, while it slightly reduces the quantity of bonds

lent by 0.039 percentage points. While the effect on the fee is economically large, the effect

on the quantity is small because the supply and demand move in the opposite direction,

canceling with each other.

These findings are in contrast to the increased ownership of insurance firms and active

mutual funds. We confirm that these other types of institutional ownership increase lend-

able supply, just like passive ownership does. However, the reaction in demand is small and
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dominated by the increased supply. Therefore, an increase in the ownership by insurance

firms and active funds leads to an increase in quantity lent and a smaller decrease in bor-

rowing fees. Therefore, passive funds are unique in that its ownership significantly decreases

shorting demand.

To understand the decrease in the demand to borrow bonds, we examine how bonds’

credit spreads react to the increased ownership. We find that a one-standard-deviation in-

crease in passive ownership reduces credit spreads by 1.9 basis points. Since credit spreads

move in the opposite direction with bond prices, the results indicate that the bond becomes

more expensive when it is held by passive owners. This finding is consistent with the lit-

erature on passive ownership (e.g. Dannhauser 2017; Bretscher, Schmid, and Ye 2024b):

since passive funds are forced to hold the security in certain indices, their inelastic demand

increases the price of securities held. This reduction in credit spreads is in contrast to the

ownership by other types of institutions: we find that an increase in ownership by insurance

firms significantly increases credit spreads, while increased ownership by active funds has no

effect on credit spreads.

The difference in the reaction of credit spreads explains why the borrowing demand

reacts differently for passive ownership and insurance firms’ ownership. We argue and show

evidence that the main borrowers of bonds are dealers, not end-users such as hedge funds.

When active customers send urgent buy orders to dealers, dealers aim to cater to this buying

pressure by first looking at their inventory and potential sellers in their network. When they

cannot locate the bond, they resort to borrowing bonds and selling them short to the buying

customer. Thus, bond borrowing stems from customers’ actions to buy rather than sell the

bonds.

When passive ownership rises and credit spread declines, active customers are less likely to

buy those expensive bonds, reducing their buying pressure. This reduction in turn decrease

dealers’ need to borrow bonds, reducing the demand to borrow bonds. In contrast, the

insurance firms’ and active funds’ ownership do not reduce buying pressure because their

bonds are not expensive.

The key to the argument above is that the main short sellers of bonds are dealers, not

customers. This is the opposite of the practice in the stock market, where the main drivers

of short selling are informed hedge funds who identify overvalued stocks and sell them short

for speculation. In the corporate bond market, such speculative short sale is prohibitively

expensive for customers who pay bid-ask spreads each time they sell short the bond and buy

it back to cover. For example, the average half spreads of our bond sample is 29 basis points

(bps) per transaction, the average loan tenure is roughly three months, and the average

borrowing fee is 44 bps per year. Thus, if a customer borrows a bond and sells it short and

2



buy it back after three months, the round-trip cost is 58 bps, which is very high and more

than half of the average three-month corporate bond returns of 1.05%. High bid-ask spreads

completely dominate the borrowing fee, which is only 11 bps per three months.

To support this claim, we run a panel regression of the daily customer buy and sell

volume on the daily changes in quantity of bonds lent. If customers short selling is the

driver of the lending activity, then customer sell volume should be positively correlated with

an increase in lending. We find, however, the opposite result. When the amount of bond

lent increases, customer sell volume declines and customer buy volume increases. Since

customer buy volume is identical to dealer sell volume, this finding suggests that an increase

in lending corresponds to dealers selling these bonds. Prior to September 2017, the amount

lent increases strongly three business days after dealer sell, reflecting the settlement cycle.

After September 2017, the increase occurs two business days after dealer sell because the

SEC shortened the standard settlement gap to two business days.

We extend the panel regression of changes in quantity on loan on bond trading volume by

including other potential determinants, such as contemporaneous and past bond returns, bid-

ask spreads and return volatility. Decomposing the explained variation in bond lending, we

find that the contemporaneous dealer trading activity explains by far the largest variation

in bond lending. If other variables, such as past returns and half spreads, capture the

motives to borrow bonds for non-market-making reasons, the contributions of these factors

to bond lending are minimal at best. For example, when we include all explanatory variables

in the multivariate panel regression, a one-standard-deviation increase in contemporaneous

dealer sell is associated with a 0.05 percentage point increase in daily changes in quantity on

loan, corresponding to 23% of its standard deviation. In contrast, a one-standard-deviation

increase in the contemporaneous bond return, a measure of speculative short motive, is

associated with only a 0.002 percentage point increase.

Therefore, the available evidence indicates that the bond short sellers are mainly dealers

and that the demand to borrow corporate bonds is driven by customers’ buying pressure, not

selling pressure. This finding explains why passive ownership reduces the demand to borrow

bonds: the bonds’ higher price alleviates speculating customers’ incentive to buy them.

Our main results on the impact of passive ownership are obtained by a static compar-

ison of bonds issued by the same firm after controlling for the influence of maturity and

bond-specific time-invariant attributes such as covenants. However, the underlying mecha-

nism linking passive ownership and lending outcomes is likely to be more dynamic. When a

passive fund invests in a bond, this action itself creates temporary buying pressure, causing

dealers to sell short and credit spreads to tighten. Meanwhile, the other speculating cus-

tomers’ aggressive purchase orders gradually diminish over time because the arrival of such
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an investment opportunity is sporadic. Thus, there are two forces at work: an increase in

passive ownership causes short selling to increase in the short run and decrease in the long

run.

To test this conjecture, we study the maturity cutoff events as proposed by Bretscher,

Schmid, and Ye (2024b). In this study, we regress changes in lending outcome variables on

a dummy that equals one when a bond’s remaining time to maturity crosses certain cutoff

values, such as three, five, and ten years. Their idea is to use this crossing event as a positive

shock to passive ownership. This is because there are more bond index funds that track

short-term bond indices than those that track long-term bond indices. Thus, as a bond’s

time to maturity shrinks, it is more likely to be held by more passive funds, and this action

is independent of the bond’s fundamental value.

We follow Bretscher, Schmid, and Ye (2024b) to estimate the impact of increased passive

ownership on quantity on loan. We find evidence supporting our conjecture. One to three

months after the bond crosses the maturity cutoff, its quantity lent increases significantly,

reflecting the increasing buying pressure of passive funds during this period. Six months after

the cutoff event, the passive ownership stabilizes, the quantity on loan starts to decline, and

the cumulative changes turn negative 18 months after the cutoff event. This medium-term

outcome reflects the decline in borrowing demand, which is exactly what we identify in the

main panel regression analysis. Thus, the dynamics of lending activities provide additional

support for our main findings that passive ownership alleviates the short sale frictions and

helps improve the dealers’ market-making capacity.

In summary, we contribute to the literature by examining the impact of increased passive

ownership of corporate bonds on bond lending, which is crucial for bond dealers’ market-

making activities.

Our paper is related to a strand of literature that examines the effect of changing own-

ership of stocks on stock lending activities. Prado, Saffi, and Sturgess (2016) investigate

the effect of institutional ownership on short selling. Coles, Heath, and Ringgenberg (2022)

document that increased index investing causes stocks in the index to have a higher short

interest. Sikorskaya (2023), Von Beschwitz, Honkanen, and Schmidt (2023), and Palia and

Sokolinski (2024) focus on passive ownership on lending outcome and argue that it is crucial

to account for the reactions in both lending supply and demand.1

The literature on equity lending and short-sales activity is vast. Starting from Miller

(1977), a significant amount of work has been done to understand the stock lending activities

and their implications on stock prices and returns (e.g. D’Avolio 2002; Cohen, Diether, and

1All the papers find that passive ownership is associated with an increase in short interest and lendable
supply in the equity space, but provide mixed evidence on the lending fees.
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Malloy 2007; Boehmer, Jones, and Zhang 2008; Saffi and Sigurdsson 2011; Blocher, Reed,

and Van Wesep 2013; Boehmer and Wu 2013; Boehmer, Jones, and Zhang 2013; Kolasinski,

Reed, and Ringgenberg 2013; Engelberg, Reed, and Ringgenberg 2018; Chen, Joslin, and Ni

2018; Muravyev, Pearson, and Pollet 2022, 2023a,b). Multiple papers have argued that in

the equity space, short-sellers are informed, and short-sale constraints have an economically

significant effect on asset prices and stock anomalies.

In contrast, there are a handful of papers on corporate bond lending. Asquith, Au, Covert,

and Pathak (2013) provide an initial look at the bond lending activities using proprietary

data and report that the cost of borrowing corporate bonds is not much higher than that

of borrowing stocks. Anderson, Henderson, and Pearson (2018) and Hendershott, Kozhan,

and Raman (2020) study whether bond lending activities are related to subsequent bond

returns. They both find evidence that an increase in bond borrowing is associated with

lower subsequent returns in the high-yield bond market, but not among the investment

grade bonds. Our paper differs from the three papers as we study the impact of the changing

ownership landscape in the corporate bond market on bond lending activities.

This paper also contributes to the literature on the behavior of institutional investors

in the corporate bond market (e.g., Becker and Ivashina 2015; Choi and Kronlund 2017;

Dannhauser and Dathan 2023; Dannhauser and Karmaziene 2023; Bretscher, Schmid, Sen,

and Sharma 2024a; Bretscher, Schmid, and Ye 2024b). There is a recent rise in research

interest, specifically in corporate bond ETFs and their implications on valuation effect and

market liquidity. Dannhauser (2017) documents that an increase in ETF ownership reduces

bond yields using a research design based on the changes to Markit iBoxx index inclusion

rules. Pan and Zeng (2019) and Koont, Ma, Ľuboš Pástor, and Zeng (2024) examine the

influence of ETF ownership on the liquidity of underlying bonds. Dannhauser and Hosein-

zade (2022) and Ma, Xiao, and Zeng (2022) show bond ETF creates flow-induced pressure

and exposes the bond market to a source of destabilizing demand in times of distress. Our

focus, on the other hand, is on the bond lending activity, which has not been studied.

The rest of the paper is organized as follows: In Section 2, we describe our data set; In

Section 3, we present our main empirical findings; In Section 4, we investigate the factors

influencing bond lending activities; In Section 5, we use alternative instruments for bond

ownership; and in Section 6, we provide a concluding remark.
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2 Data and Sample Construction

We compile our sample from multiple data sources: (1) IHS Markit for security lending data,

(2) the Thomson Reuters eMAXX database for quarterly holdings of bond investors, (3) the

Mergent Fixed Income Securities Database (FISD) database for bond characteristics, (4) the

Enhanced Trade Reporting and Compliance Engine (TRACE) database for bond transaction

volume and direction, and (5) the Bank of America Merrill Lynch (BAML) database for daily

bond returns. This section outlines the construction of our dataset and variables, as well as

presents summary statistics.

2.1 Bond Lending Data

We source our bond lending data from the Markit Securities Finance Buy-Side Analytics

Data (now part of S&P) via WRDS. This database covers daily data on securities borrowing

and lending activity, including the quantity on loan, the active lendable quantity, utiliza-

tion ratio, rebates and borrow (loan) fees, average loan tenure, and other lending outcome

variables. We select our sample based on two filters. First, we require the variables “Quan-

tityOnLoan” and “IndicativeFee” are not missing. Next, we require the observation to be

non-missing in the corporate bond database, created using Mergent FISD and TRACE.2 The

first requirement implies that all bonds in our sample have non-zero quantity on loan. Thus,

our study focuses on the intensive margin. However, the requirement is necessary because

we want to study the supply and demand that simultaneously drive the quantity on loan

and the borrowing fee, and we do not know the fee for bonds with zero quantity on loan.

We scale the quantity on loan and lendable supply by the amount outstanding of bonds,

obtained from FISD. Following recent research in the equity lending market (e.g., Muravyev,

Pearson, and Pollet 2022, 2023a), we use the variable “IndicativeFee” to proxy for direct

short-selling cost, which is a buy-side borrowing fee. Specifically, it is Markit’s estimate

of the expected borrow cost, in fee terms, for a hedge fund on a given day based on both

borrow costs between Agent Lenders and Prime Brokers as well as rates from hedge funds

to produce an indication of the current market rate. Since our main analysis is conducted

at a quarterly frequency, we take the average of the daily lending variables within each

bond-quarter observation.

The Markit sample after the data filters above contains 300,282 bond quarters for 17,363

bonds issued by 1,709 firms over 66 quarters from 2006 Q3 to 2022 Q4. Our sample begins

2We filter corporate bond data following standard approaches in the literature and provide details on the
cleaning procedure in the Internet Appendix A.
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in September 2006 because the bond lending data have been available at a daily frequency

since then on WRDS.3

2.2 Bond Investor Holdings Data

The bond holdings data are from the Thomson Reuters eMAXX database at a quarterly

frequency. The database mainly covers the holdings of US insurance companies, US mutual

funds, and US pension funds; it does not contain bond holdings from government agencies,

banks, and households.4 To clean the eMAXX data, we start with the dollar-denominated

bonds issued by US firms from Mergent FISD and restrict the sample to corporate bonds

that have trade records in the Enhanced TRACE database.

Next, we carefully identify and delete duplicate observations. Duplicates might arise for

two reasons. First, eMAXX presents the holding data by the time information is reported.

For example, a fund’s holding as of 2002 Q4 may be reported in 2003 Q1, 2003 Q2, or both.

Thus, in some cases, the same bond holdings data appear in multiple reporting quarters,

leading to duplicate observations. In such instances, we keep the first vintage of holdings

data for each bond-quarter-fund-managing firm pair. Using the example above, for 2002 Q4

holdings, we keep the one reported in 2003 Q1 and delete the observation reported in 2003

Q2.

Second, there are funds managed by multiple managing firms, called co-managed funds.

For those funds, eMAXX may create separate entries across different managing firms and

another entry for total holdings.5 To avoid double counting, we delete such duplicates arising

from the co-managed funds.

Using the investor type classification codes provided by eMAXX, we group investors

into the following categories: insurers (i.e., life insurance, and properties and casualties

insurance), mutual funds (i.e., active funds and passive funds), and others (e.g., pension

funds).6 Since eMAXX does not separate active and passive mutual funds, we identify

3We have reached out to WRDS and S&P about the missing Markit Securities Finance Analytics
bonds and equities data from January 2002 to August 2006. This older data used a different col-
lection methodology compared to data from September 2006 and onward, and is no longer offered by
S&P. WRDS acknowledged this issue after our inquiries: https://wrds-www.wharton.upenn.edu/pages/
support/support-articles/markit/msf-analytics-2002-2005-is-legacy-version-1/. We also spot-
ted sparse and incomplete data for the variable “IndicativeFee” in July 2007; however, WRDS and S&P
cannot fix this issue.

4The eMAXX version we have subscribed to covers fixed income holdings data for North America.
5These observations are identified when the entry for FIRMID is CO-MANAGED.
6We classify an investor as an insurer if its FUNDCLASS is in (INS, LIN, PIN, RIN). We define an

investor as a mutual fund if the FUNDCLASS is in (AMM, ANN, BAL, MMM, MUT, END, QUI, FOF,
UIT). Thus, our broad category of mutual funds also includes money market funds, balanced funds, unit
investment trusts, funds of funds, and variable annuity funds.
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passive funds following three steps.

We first manually link the mutual funds in eMAXX to the CRSP Mutual Fund database

(MFDB) by matching funds based on their names. Among 9,263 mutual funds in eMAXX,

we could merge 1,508 bond mutual funds to MFDB. Then, we use MFDB’s identifiers (index

fund and ETF/ETN flags) to identify passive funds. This procedure identifies 297 (bond)

funds as passive.

For those funds that MFDB does not identify as passive (bond) funds or funds that are

not matched with MFDB bond funds, we further search index- or ETF-related words in fund

names and classify them as passive funds if their name contains the keywords.7 This second

process adds additional 550 funds as passive funds.8

Finally, we manually verify each passive fund through searching and checking the man-

aging firm official websites, Morningstar, EDGAR fund prospectus, etc, whenever necessary.

After this step, we end up with a total of 847 passive funds.9

We create our bond ownership variables by aggregating a bond’s ownership among in-

vestors by different types in each quarter. We exclude observations if the total investor hold-

ings are larger than the amount outstanding. Then, we divide the holdings by the bond’s

amount outstanding for active funds, passive funds and insurance firms. Before merging

with Markit bond lending data, the sample contains 1,086,821 bond-quarter observations for

90,711 bonds over 66 quarters from 2006 Q3 to 2022 Q4.

2.3 Summary Statistics

We merge the quarterly bond lending data and holdings data to create our baseline dataset.

Our final sample includes 296,211 bond-quarter observations for 17,235 bonds issued by 1,706

firms from 2006 Q3 to 2022 Q4. We winsorize continuous variables at 1% and 99% by each

quarter to mitigate the effects of outliers while avoiding look-ahead bias.

Table 1 presents the summary statistics of quarterly panel data on bond lending outcomes,

investor ownership, and other characteristics. An average bond has loan quantity of 1.45%,

lendable supply ratio of 23.72%, utilization rate of 6.73%, loan tenure of 75 days, borrowing

fee of 44 basis points (bps), and credit spread of 213 bps. In terms of ownership structure,

7The list of keywords includes (1) words related to ETFs and index fund names (e.g., INDEX, INDX,
ETF, ETN, EXCHANGE); (2) words related to bond index providers (e.g., BLOOMBERG, FTSE, BOXX,
ISHARES%BOND%).

8These include index funds or ETFs that hold US corporate bonds and are in the eMAXX database but
are not identified as bond mutual funds in MFDB.

9Table A2 in the Internet Appendix shows a sample list of passive funds in eMAXX. The full list of
passive funds will be posted on the authors’ website.
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the average institutional ownership is 45.70%, of which insurance firms hold 31.41%, and

mutual funds hold 13.94% on average in the sample period. In particular, the passive fund

ownership is 3.63%, and the active fund ownership is 13.94%. A typical bond in our sample

has a credit rating of BBB (which corresponds to a numerical value of 8.45), age of 4.94

years, time to maturity of 9.96 years, amount outstanding of $676 million, and zero trading

day ratio of 35%.

Figure 2 shows the time series of ownership shares averaged across bonds within a year.

In our merged sample, the ownership share of insurance companies is higher than that of

other types. However, their share declines from 36.74% in 2006 to 27.69% in 2022. In

contrast, the ownership share of passive mutual funds is small but increasing. It is close to

zero in 2006, but increases to 6.77% in 2022.

In Figure 3, we plot the average of the lending outcome variables using all corporate

bonds in our sample as well as the subsample of investment-grade and high-yield bonds.

Panel A plots the average lendable supply. The supply is more than 30% of the amount

outstanding in 2007 and 2008. Thereafter, its size declines steadily and remains around 20%

of the bond market.

Figure 3 Panels B and C report the quantity on loan and the short loan quantity, which

is the ratio of the bond lending used to short the bonds to the bond’s amount outstand-

ing.10 Consistent with Hendershott, Kozhan, and Raman (2020), we observe a decline in

quantity on loan and short loan quantity in 2009. Before the financial crisis, the amount

lent represents about 4% of the amount outstanding. After the crisis, it drops to about 1%

and remains stable thereafter. Comparing investment-grade bonds with high-yield bonds,

high-yield bonds have a higher quantity on loan than investment-grade bonds.

Comparing Panels B and C, between 2006 and 2008, the values of the short loan quantity

tend to be smaller than the quantity on loan, especially among investment grade bonds,

because they are more likely to be used as collateral in financing trades. However, after

2009, the two variables are almost identical. Therefore, these data suggest that the role of

financing transactions is limited, and that a large portion of the borrowed bonds are sold

short.

Finally, Panel D reports the average borrowing fee. For all bonds, the fee ranges from

0.31% to 0.58% with no discernible pattern. Consistent with Asquith, Au, Covert, and

Pathak (2013), the level of the borrowing fee is similar to or even slightly lower than the equity

borrowing fee.11 However, high-yield bonds have higher borrowing fees, ranging from 0.42%

10The variable “Short Loan Quantity” in Markit represents the number of securities on loan with dividend
trading and financing trades removed. Markit uses a proprietary algorithm to strip out these trades.

11The level of the fee in our sample is higher than some of the previous research that uses the sell-side
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to 0.81%. Because the cross-section of fees is skewed to the right, the fee for typical bonds

is lower: the median borrowing fee, plotted in Panel E, remains lower than the averages,

ranging from 0.24% to 0.43% for all bonds.

In the Internet Appendix B and C, we provide further details on the construction of daily

and monthly data used in the paper. Table A1 shows the descriptive statistics of daily and

monthly panel data.

3 Passive Ownership and Bond Lending Activities

3.1 Overall Sample

Empirical Method. In this section, we explore the relationship between passive bond

ownership and bond lending activities, including lending supply, quantity on loan, and bor-

rowing fees. Specifically, we run a panel regression of lending activity variable Y of bond i

issued by firm k in quarter q on contemporaneous passive ownership shares,

Yi,k,q = βPassiveFundi,k,q + γXi,k,q + αk,q + θi + εi,k,q, (1)

where a set of control variables Xi,k,q includes the log value of the amount outstanding,

numerical rating, time to maturity, and the percentage of zero-trading days. Standard errors

are double clustered at the bond and quarter levels.

Our primary variable of interest is PassiveFund defined as the sum of the amount held

by all passive funds divided by the bond’s amount outstanding and expressed as a percentage.

The slope coefficient β allows us to infer the influence of a one-percentage-point increase in

passive ownership on lending activities. We also create the scaled ownership by insurance

firms, Insurer, and that by active mutual funds ActiveFund and compare the effects of

passive ownership with them.

We aim to identify an exogenous variation in ownership that is orthogonal to bond issuers’

characteristics that might influence lending activities. For example, if a firm has a higher

default risk, then this might increase the speculative demand to borrow its bonds, while

passive funds investing in high-yield bonds increase their ownership at the same time. To

eliminate those unmodelled forces driving both the ownership and the outcome variables,

we include the firm-quarter fixed effect in the panel regression. This procedure identifies the

database. Our database measures the borrowing fee from the perspective of ultimate borrowers. The sell-
side data takes the perspective of ultimate lenders and, thus, their fee level is lower because intermediating
dealers charge a higher fee to lend than to borrow.
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coefficients by taking advantage of the variation across bonds with different maturity in the

same quarter, issued by the same firm.

It is still possible that variation in maturity may create a mechanical correlation between

the dependent variable and PassiveFund. For example, passive ownership may increase

for short-maturity bonds while shorter maturity may reduce lending fees. In addition, a

bond-level variable such as covenants and seniority may simultaneously move ownership and

lending outcomes. Thus, we further control for bond fixed effects and bonds’ maturity as

an additional control variable to eliminate the bond- and maturity-specific shocks driving

ownership and lending activities. This rich set of controls rules out potential bias in the

estimated relationship between ownership and lending activities.

Main Results. We report β estimates, number of observations, and adjusted R2 in Panel

A of Table 2. We find that a one-percentage-point increase in passive ownership causes the

loan quantity to fall 0.009 percentage points (pp), the lendable supply to rise 0.075 pp, and

the borrowing fee to fall 0.004 pp. Since the standard deviation of PassiveFund is 4.40%, a

one-standard-deviation increase in passive ownership causes the loan quantity to fall by 0.039

percentage points (pp), the lendable supply to rise by 0.333 pp, and the borrowing fee to fall

by 0.018 pp. The magnitudes of the reactions of these three outcome variables correspond

to 2.9%, 2.5%, and 14.4% of their inter-quartile range, reported in Table 1, respectively.

While the effect on the lending fee is substantial compared to its typical variation, the effect

on quantity appears to be small. This estimate, however, hides something very interesting,

where the shifts in the supply and demand curves almost cancel each other out.

We can infer the underlying shifts in the supply and demand curves by examining the signs

of the changes in quantity and price variables. Column (2) of Table 2 shows that lendable

supply increases as passive ownership increases. However, columns (1) and (3) show that the

equilibrium loan quantity and fees fall. To make sense of these changes, in Panel A of Figure

1, we visualize the effect of increased passive ownership. With increased passive ownership,

the increase in lendable supply indicates that the supply curve shifts outward. However,

there is a decrease in the demand for bond lending that more than offsets the increased

supply, resulting in even lower lending fees and a slightly lower equilibrium loan quantity.

The effect on the equilibrium quantity is small because the increase in supply is offset by

the decrease in demand.

The response of borrowing demand in the corporate bond market is opposite to that

documented in the stock market. Specifically, Sikorskaya (2023) shows that a one-standard-

deviation increase in benchmark intensity, another proxy for passive ownership, leads to a
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0.348 pp and 0.032 pp increase in the quantity on loan and borrowing fees.12 Thus, in the

stock market, the demand for security lending appears to increase in response to increases in

passive ownership. We explain below the apparent discrepancy between bonds and stocks.

Panel B of Table 2 reports the multivariate regressions including PassiveFund, Active-

Fund, and Insurer. When the left-hand-side variable is lendable supply, the coefficients on

PassiveFund, ActiveFund, and Insurer are 0.072 pp, 0.096 pp, and 0.100 pp, respectively.

For borrowing fees, the corresponding coefficients are −0.004 pp, −0.0001 pp, and −0.001

pp, respectively. Thus, an increase in institutional ownership generally leads to an increase

in bond supply and lower fees.

The difference between passive funds and other institutions arises when the left-hand

variable is loan quantity. Here, a one-percentage-point increase in passive ownership reduces

the loan quantity by 0.010 pp. In contrast, a one-percentage-point increase in active owner-

ship and insurers increases the loan quantity by 0.030 and 0.019 pp, respectively. Thus, the

demand for loan responds differently to ownership by different institutional types. When

active fund or insurance ownership increases, borrowing demand may increase or decrease.

The magnitude of the demand response, however, is dominated by changes in supply, and

thus we observe price and quantity moving in opposite directions. However, in response to

an increase in passive ownership, demand falls enough to dominate the increase in supply, so

that price and quantity move in the same direction. We visualize these findings in Panel B of

Figure 1, explaining the impact of increased ownership by insurance firms on bond lending.

These coefficients can be used to assess the impact of changing landscape of corporate

bond ownership on bond lending. From 2006 to 2022, the share of passive funds, active

funds, and insurer changes by 6.4 pp, 2.2 pp, and −9.1 pp. By multiplying these changes by

the coefficient estimated in Table 2, we estimate that the ownership changes over the past 17

years have led to a 0.17 pp decline in loan quantity (12.6% of the inter-quartile range) and a

0.016 pp decline in lending fee (13.1% of the inter-quartile). Our estimates suggest that this

structural change eases borrowing constraints, allowing dealers to engage in market-making

activities more smoothly.

Mechanism. Insurance firms are known to buy and hold and their portfolio turnover rate

is generally low. In eMAXX data, the average portfolio turnover rate for passive funds, active

funds, and insurance firms are 3.6%, 4.9% and 1.7% per quarter, respectively. Based on this

metric, insurers appear to be more inactive than passive funds. What then makes passive

12To obtain these values, we multiply the standard deviation of benchmark intensity, 2.56% (her Table
1), by the coefficients in Table 2. Prado, Saffi, and Sturgess (2016) examine the effect of total institutional
ownership (rather than passive ownership) and find that a one standard deviation increase in ownership
leads to a 0.056 pp decrease in fees.
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funds different from insurers? The key to understanding this dichotomy is that passive funds

follow the bond index and must trade to track the index, which includes and excludes bonds

based on predetermined criteria. This generates mechanical transactions and inflates the

portfolio turnover rate while pushing bond prices up in the index (Dick-Nielsen and Rossi

2018). In contrast, insurance firms are known to reach for yield (Becker and Ivashina 2015),

implying that the bonds that they hold tend to be cheaper than those held by their peers.

The relation of bond price to ownership is the key to understanding why the demand

to borrow a bond responds to changes in its ownership. A lower bond price motivates

opportunistic investors such as hedge funds to send aggressive buy orders and dealers to

sell short the bond to cater to this demand. Passive ownership alleviates this pressure by

inflating bond prices. To see this, we next examine the response of bond prices.

Column (5) of Panel B, Table 2 reports the relationship between various types of insti-

tutional ownership and bonds’ credit spreads, which is the difference between the corporate

bond yield and the maturity-matched Treasury bond yield. Consistent with the findings

of Dannhauser (2017) and Bretscher, Schmid, and Ye (2024b), higher passive ownership is

associated with lower credit spreads. In our estimates, a one-percentage-point increase in

passive ownership leads to a 0.004 pp decline in credit spreads. This is in contrast to in-

surance ownership: their ownership leads to a 0.007 pp increase in spreads, confirming their

reaching-for-yield behavior. Despite their small ownership share, passive ownership reduces

credit spreads, which attenuates the buying pressure of other investors and reduces dealers’

demand for short bonds to cater to their trading needs.

The bonds held by passive funds are more expensive, but there may be several mechanisms

behind this. For example, Reilly (2022) notes that dealers tend to include overvalued bonds

in a creation basket of ETFs, which make up the majority of our passive funds. Thus, while

passive ownership may or may not cause the bond price to rise, passive funds end up holding

overpriced bonds with lower credit spreads due to the strategic behavior of dealers.

3.2 Subsample of Special Bonds

The effect of passive ownership on bond lending may differ depending on the reason for the

lending. If a bond is special, lending is driven by increased demand to borrow it. On the

other hand, non-special bonds may be lent to raise cash, which is driven by increased supply.

To understand the potential difference between bonds, we split the sample into special

and non-special (GC) bonds. In the equity literature, a cutoff such as 1% of the lending fee

is often used to define specialness (e.g., Sikorskaya 2023). Since the lending fee for bonds is

somewhat lower than that for stocks, we do not use the same cutoff. Rather, each quarter
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we define bonds in quarter q to be special if their average lending fee in quarter q − 1 is in

the top ten percentile of the corporate bond cross-section (Palia and Sokolinski 2024 also

follow this rule to define special stocks). We use the lagged loan fee to define specialness

because the fee in quarter q is the target we want to explain.

Using the subsample of special and GC bonds, we estimate the panel regression in Eq.

(1). Table 3 Panel A reports the impact of a one-standard-deviation increase in passive own-

ership on the same five outcome variables in Table 2, separately for special and GC bonds.

An increased passive ownership increases the lending supply and decreases borrowing fee,

consistent with our full-sample results in Table 2. As expected, the magnitude of the coef-

ficients is greater for special bonds. A one-standard-deviation increase in passive ownership

increases lendable supply by 1.495 pp (9.4% of the sample average) and decreases the fee by

0.187 pp (1.1% of the sample average).

However, the effect of passive ownership on loan quantity is different for special bonds

than for GC bonds. A one-standard-deviation increase in passive ownership increases the

loan quantity for special bonds by an insignificant 0.086 pp, while it decreases the loan

quantity for GC bonds by 0.034 pp (t = −2.78). Thus, the reduction in lending activity

observed in the main sample is driven by GC bonds, not special bonds. This finding suggests

that the impact of passive ownership is spread across a wide range of corporate bonds.

Why does the quantity on loan for special bonds increase albeit insignificantly? This is

because the motivation to short special bonds is different from that for GC bonds. Anderson,

Henderson, and Pearson (2018) show that informed trading occurs mainly among special

bonds with high fees. Specifically, among bonds with high fees, bonds with high quantity on

loan earn lower returns than those with low quantity on loan. Therefore, for special bonds,

the decrease in credit spreads does not prompt the demand to fall.

3.3 Subsample of High Yield Bonds

Table 4 reports the estimation results of Eq. (1) using the subsample of investment grade and

high yield bonds. We define high yield bonds if the numerical rating at the end of quarter

q−1 is below BBB and investment grade bonds otherwise. We find that an increase in passive

fund ownership has qualitatively the same effects on both investment grade and high yield

bonds. In both cases, passive ownership increases the supply of bonds available for loan and

reduces loan fees, indicating an increase in the supply of bonds available for loan. For the

loaned quantity, a one-standard-deviation increase in passive ownership reduces the loaned

quantity by 0.035 percentage point for investment grade bonds and by 0.055 percentage

point for high-yield bonds. Due to the smaller sample size, the effect on high-yield bonds is
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statistically indistinguishable from zero. Nevertheless, the key finding is that the demand for

credit falls for both investment grade and high yield bonds in response to increased passive

ownership.

4 Why DoMarket Participants Borrow Corporate Bonds?

4.1 Univariate Analysis

In this section, we analyze the motivation for borrowing corporate bonds. As in Asquith, Au,

Covert, and Pathak (2013), there are at least three reasons why market participants borrow

bonds: 1) investors speculate on the potential decline in bond prices by borrowing bonds and

selling them short, 2) dealers respond to clients’ immediate buy orders by borrowing bonds

and selling them short, 3) bond owners seek to finance their holdings by lending them out and

receiving cash collateral. The first and second motivation generates the demand to borrow

bonds, but the borrowers (and thus the short sellers) are different: in the first, customers

such as hedge funds are the borrowers and short sellers of the bond; in the second, dealers are

the borrowers and sellers. The last motivation generates the lending supply, which reflects

the funding needs of bond owners.

To dissect these motivations, we start with a simple “smell” test using univariate re-

gressions and then in the next section check for robustness by adding a number of control

variables. As a starter, we run a panel regression of daily customer buy and sell volume

scaled by the amount of bonds outstanding on day d+ h, V oli,d+h,ξ, on daily changes in the

amount of credit, also scaled by the amount of bonds outstanding, dQi,d,

V oli,d+h,ξ = ah,ξ + bh,ξ · dQi,d + εi,d+h,ξ, where ξ ∈ {‘Buy’,‘Sell’}, (2)

for h = −5, ..., 5. We use daily changes in quantity on loan to capture the flow of activities

because trading volume is also a flow variable (as opposed to a stock variable).

The slope coefficient bh,ξ measures the sensitivity of customer trades to changes in loaned

quantity. This estimate can be used to distinguish whether customers or dealers are shorting

the bonds. Suppose there is an increase in the quantity on loan driven purely by customer

selling short, then we expect bh,Sell = 1: that is, a one percentage point increase in the

quantity on loan corresponds to a one percentage point increase in customer selling. If there

is no trading of bonds other than those borrowed, then the R-squared of the regression will

be one as well.

It is also possible that the increase in quantity on loan reflects a decrease in the number of
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customers returning previously borrowed bonds. Then the increase in lending corresponds to

a decrease in customer purchases. That is, customer short activity is decreasing. If this is the

only driver of dQ, then we expect bh,Buy = −1. More realistically, if the increase in borrowing

is driven by both an increase in newly established short positions and a decrease in previously

established short positions, we expect 0 < bh,Sell < 1, −1 < bh,Buy < 0 and bh,Sell−bh,Buy > 0.

To the extent that there are bond transactions unrelated to borrowing/lending, the regression

R-squared may be lower than one.

If, on the other hand, it is dealers who borrow bonds and short them for market-making

activities, then the prediction for the coefficients is the opposite. An increase in borrowing

should correspond to an increase in customer buy, implying a positive coefficient, 0 < bh,Buy <

1. It may also correspond to a decrease in customer selling (as dealers’ short covering activity

decreases), implying a negative coefficient −1 < bh,Sell < 0. If dealer short and short covering

fully explains lending activities, bh,Sell − bh,Buy < 0 holds.

Finally, if bond lending is motivated by financing reasons, then lending is not associated

with buying or selling the bond. Therefore, we expect the slope coefficients to be zero for

both customer purchases and sales.

We estimate the regression in Eq. (2) using the daily subsample before and after Septem-

ber 4, 2017. We choose the cutoff date as the date when the SEC implemented a new rule for

the settlement cycle of securities transactions. Before September 4, transactions are gener-

ally settled three business days after the trade date, but on September 4, this gap is reduced

to two business days.13

Panel A of Figure 4 plots the coefficient estimates bh,ξ of the regression in Eq. (2) using

the first subsample before September 4, 2017, along with two standard error bars. We

compute standard errors by double-clustering at the bond and date level.

The plot shows a striking pattern for the coefficients on day d − 3, which reflects the

correlation between day d − 3 volume and day d changes in borrowing quantity. We find

that customer buying is strongly positively correlated with quantity on loan, while customer

selling is negatively correlated. Using bonds with all credit ratings, a one percentage point

increase in changes in quantity on loan corresponds to a 0.19 percentage point increase in

customer buys and a 0.11 percentage point decrease in customer sells. Because bh,Sell −
bh,Buy = −0.3 < 0 holds, dealers’ market-making activities are an important driver of bond

lending.

Panel B of Figure 4 plots the coefficient estimates bh,ξ for the subperiod after September

5, 2017. The figure looks similar to Panel A, except that the peak of the increase in customer

13In 2024, the settlement period is further reduced to one business day.
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buying now shifts from d−3 to d−2, reflecting the fact that the settlement period is shortened

from three to two days.

The fact that the sum of |bd−3,Sell − bd−3,Buy| is less than one suggests that dealer short

selling is an important but not the only driver of bond lending. The insensitivity of bond

volume to lending may reflect the existence of financing transactions in which borrowed

bonds are not sold. In addition, it is possible that customers speculate and sell borrowed

bonds short, but their activity is dominated by dealers’ short selling, which attenuates the

magnitude of the slope coefficients. At any rate, the evidence we have so far suggests that

dealer short selling is not negligible and on average greater than customer short selling.

Informed trading is more prevalent in the HY bond market as these bonds are more

sensitive to issuers’ default risk. Thus, we may observe more speculative short selling in HY

bonds than IG bonds. In Figure A1, we show the univariate regression in Eq. (2) using

the subsample of bonds based on the credit rating on day d. We find that the figures are

virtually identical for IG and HY bonds, suggesting that the determinants of bond lending

are similar across bonds with various credit ratings.

The effect of changing the settlement period is important for the daily data analysis using

the securities lending database. On the settlement day, market participants typically do not

make decisions to borrow or lend the securities. These decisions are likely to be made on

trade dates that are 2 or 3 business days before settlement. There are exceptions because the

settlement of security lending does not follow exactly the rule for settling outright purchase

and sales transactions. In an emergency situation of failed delivery, market participants may

tend to security lending transactions with very short settlement period, even on the same

day. Still, these exceptions are rare. Therefore, typically, if one wants to understand the

relationship between securities return and lending, then the “contemporaneous” relationship

can be obtained by regressing the quantity lent on day d on the return on day d− 2 or d− 3.

4.2 Multivariate Analysis

To quantify the contributions of the three drivers of bond lending, we follow Diether, Lee,

and Werner (2009) and regress changes in the quantity on loans on a set of explanatory

variables. Specifically, the panel regression model is as follows,

dQi,d = b0ri,d−s + b1r̄i,d−s−5,d−s−1 + b2V oli,d−s,Buy + b3V oli,d−s,Sell + b4dQi,d−5,d−1

+ b5V oli,d−s−5,d−s−1 + b6V oli,d−s−5,d−s−1 + b7h̄i,d−s−5,d−s−1,Buy + b8h̄i,d−s−5,d−s−1,Sell

+ b9σi,d−s−5,d−s−1 + γd + αi + εi,d, (3)
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where the subscript s is 3 if d is on or before September 4, 2017 and 2 thereafter. Thus, day

d− s is the date when participants make the decision to borrow and sell a bond. The set of

explanatory variables includes ri,d−s, the daily return on bond i on day d− s; V oli,d−s,ξ, the

daily volume with a trading side ξ scaled by amount outstanding; hi,d−s,ξ, the half spread

with a trade side ξ; σi,d−s−5,d−s−1, the bond return volatility computed over the five-day

period from day d−s−5 to d−s−1. Variables with an upper bar refer to the average of the

daily values over the period. To compare the economic significance of the slope estimates

across variables, in this regression, all explanatory variables are standardized to have a mean

of zero and a standard deviation of one. Standard errors are double clustered at the bond

and day level.

Column (1) of Table 5 reports the regression estimates using contemporaneous and past

bond returns as explanatory variables. Consistent with the existence of opportunistic cus-

tomer short selling, the slope coefficients are positive. A one-standard-deviation increase

in the contemporaneous (i.e. day d − s) return is associated with a 0.21 bps increase in

lending, while the increase in lagged returns is associated with a 0.03 bps increase. Since the

standard deviation of daily changes in the quantity on loan is 19.80 bps, the estimates are

economically small, indicating that speculative short selling by customers is likely to play a

minor role in explaining bond lending.

Column (2) of Table 5 adds lagged changes in quantity on loan, but the coefficients on

the contemporaneous and past returns remain small.

In Columns (3) to (5), we examine the role of customer buying and selling volume. In

Column (3), we use the contemporaneous buy and sell volume and the averages of the lagged

volume. In Column (3), the point estimates for the coefficient on contemporaneous buys and

sells are 4.54 bps and −3.90 bps, respectively. Consistent with the univariate analysis in the

previous section, an increase in securities lending is strongly positively associated with a

contemporaneous increase in customer buys and negatively associated with customer sells.

The point estimates are economically significant when compared to the standard deviation of

the right-hand-side variables. The magnitude of the estimates remains unchanged when we

add other control variables such as half spreads (buys and sells separately) or the volatility

of bond returns.

In Column (6), we add all the variables in the panel regression. The point estimates

remain similar for all variables. The magnitude of the coefficient on the contemporaneous

customer buying and selling dwarfs that on all other variables. For example, the coefficient

on customer buying is about 30 times as large as that of the return, and that on the customer

selling is 25 times as large as that on the return. The third and fourth largest coefficients are

those on lagged customer sales (-1.64 bps) and lagged average changes in quantity on loans
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(-1.67 bps). Therefore, dealers’ market-making activities, in which they sell short bonds to

customers, dominate other variables in explaining the variation in bond lending activity.

5 Identification Based on Maturity Cutoffs

Our main results assess the effect of increased passive ownership using within-firm variation

in lending outcomes. While this is a valid approach for identifying ownership shocks, it is

not the only one.

Bretscher, Schmid, and Ye (2024b) propose that one can use maturity cutoffs as a valid

instrument for changing passive ownership. Specifically, they show that when the remaining

maturity of a bond shrinks beyond a certain threshold, such as three or ten years, passive

ownership increases. This happens because there are more short-term index funds than long-

term index funds. This provides another clean identification of shocks to passive ownership,

because the fundamental values of a bond remain very similar when its maturity changes

from (say) 10.1 years to 9.9 years. Since Bretscher, Schmid, and Ye (2024b) study the effect

of ownership on bond pricing and liquidity, we revisit their results focusing on bond lending

outcomes.14

To assess the impact of switching ownership, we define a dummy variable that takes

on a value of one if a bond’s remaining time to maturity crosses the three, five, and ten

year cutoffs on any day in month t and zero otherwise, denoted Switchi,t. We then regress

changes in lending outcome variables for bond i, including lending supply, quantity on loan,

and lending fees. In addition, we use passive ownership as another outcome variable to

verify that crossing maturity increases ownership. In this analysis, we use the monthly data

constructed as described in the Internet Appendix C.

Specifically, we estimate a panel regression,

∆Outcomet−1→t+h
i = βhSwitchi,t + Controlsi,t−1 + αi + λt + ehi,t, (4)

where ∆Outcomet−1→t+h
i is the change of the bond lending and ownership variables for bond

i from t−1 to t+h. We set h = −4, . . . , 24 to study the pre-trends, short- and medium-term

impacts. Controlsi,t−1 includes the log of amount outstanding of the bond, numerical credit

rating, and the fraction of zero trading days in a month. Each regression includes bond and

year-month fixed effects. For this regression, we restrict to the sample that ∆Outcomet−1→t+h
i

14Internet Appendix of Bretscher, Schmid, and Ye (2024b) also study several bond lending outcomes.
Our results are very similar to theirs, but we extend the horizon for the outcome variables to examine the
medium-term effect of increased passive ownership.
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are all available across h for comparability. Standard errors are double-clustered at the bond

and year-month levels.

Table 6 Panel A reports the coefficient estimates for passive ownership and the corre-

sponding panel in Figure 5 plots the estimated coefficients with two-standard-error bars to

visualize them. Consistent with Bretscher, Schmid, and Ye (2024b), we find that when a

bond crosses the maturity cutoff, its passive ownership increases significantly. Specifically,

the ownership increases 0.021 pp in the month when the bond maturity becomes less than the

cutoff (h = 0) from a month before. While the initial reaction is statistically insignificant,

the ownership gradually increases for the following nine months, with β9 being estimated

at 0.214 pp (t = 4.54). This increase is permanent, as the increase in ownership 24 months

after crossing the cutoff is still high at 0.239 pp (t = 3.79). Thus, we confirm that our

instrument is valid and generates non-trivial variation in passive ownership when compared

with its sample average (3.63 pp) and inter-quartile range (4.91 pp).

Panels D to F in Table 6 and Figure 5 report the regression estimates in Eq. (4) for

changes in quantity on loan, lendable supply, and lending fees. The response of the loan

quality three, nine, 18, and 24 months after the bond crosses the cutoff is 0.06 pp, −0.02 pp,

−0.11 pp, and −0.12 pp, respectively. That is, in the first three months, the loan quantity

increases by a small amount, reflecting the buying pressure created by passive funds who

must buy those bonds to track a bond index. However, over the medium term, the initial

reaction reverses, and the quantity on loan declines. This happens because the increased

passive ownership reduces the bonds’ credit spreads and reduces the buying pressure from

other speculative investors. As a result, dealers have to sell short bonds less than before,

leading to a lower quantity on loan.

The decrease of quantity on loan identified using maturity cutoff as an instrument is

qualitatively consistent with our main results based on the quarterly panel regressions with

firm-quarter fixed effects. However, quantitatively, the point estimate is economically more

significant. In our main result, a one-percentage-point increase in passive ownership reduces

the quantity on loan by 0.087 pp. In the maturity cutoff analysis, for h = 24. the reaction of

quantity on loan to the one-percentage-point increase in passive ownership generates a 0.500

pp (=0.119/0.239) decline in quantity on loan. This reaction is substantial given the average

and inter-quartile range of quantity on loan (1.45 pp and 1.35 pp, respectively). In addition,

in Panel E, lendable supply declines substantially after a bond crosses the maturity cutoff.

The estimated change from h = −1 to h = 24 is −0.344 pp, which is 3.43 standard errors

below zero. This is in contrast to our main results, where an increase in passive ownership

raises the lendable supply.

To reconcile the apparent discrepancy in estimated reactions between two types of in-
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struments, one must understand the nature of the maturity cutoff event. That is, when a

bond crosses the maturity cutoff, different types of investors react simultaneously. To see

this, in Panels B and C of Table 6, we report the changes in ownership share of insurance

firms and active mutual funds. The corresponding panels in Figure 5 show the regression

coefficient estimates.

When the bond crosses the cutoff, insurance firms gradually reduce their ownership share.

While the changes in ownership in the month of crossing the maturity cutoff are close to

zero, the cumulative changes become more negative as the horizon h increases. For h = 24,

insurance firms’ ownership declines 0.488 pp (t = −5.22). In contrast, active mutual funds

initially reduce their share, but the effect eventually disappears over the medium term. For

example, the estimated change from h = −1 to h = 3 is −0.287 pp (t = −2.93), but the

cumulative change from h = −1 to h = 24 is insignificant 0.054 pp.

In summary, over the medium term, crossing the maturity cutoff significantly increases

passive ownership and decreases insurance ownership. The decrease in insurance ownership

reduces the lendable supply and dominates the increase in passive funds. Changes in insur-

ance ownership dominate because the magnitude of the change is larger (-0.488 pp) than

that of passive ownership (0.243 pp), and a one percentage point increase in insurance own-

ership has a larger impact on lendable supply (0.100 pp, see the unscaled coefficient in Table

2) than the same change in passive ownership (0.072 pp). As a result, the maturity cutoff

event significantly reduces lendable supply, as shown in Panel E, Figure 5. This reduction

in supply leads to a more pronounced decline in quantity on loan (Panel B) than that in our

main results.

In contrast, the borrowing fee (Panel F) reacts little when a bond crosses the maturity

cutoff. This is because the increase in passive ownership decreases the fee, while the decreased

insurance ownership increases it. Since the two forces cancel each other out, the resulting

reactions in the lending fee are insignificant for all horizons.

In this section, we use the event study approach to understand the impact of changing

bond ownership on bond lending. The findings support our main results in Section 3, where

all else equal, an increase in passive ownership reduces the quantity on loan and borrowing

fees.

6 Conclusion

In this paper, we investigate the mechanism through which increased passive ownership

impacts the lending activity of corporate bonds. To understand the mechanism, it is essential
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to clarify why market participants borrow or lend corporate bonds, which have order-of-

magnitude higher bid-ask spreads than stocks and thus their trading is costly for investors.

We show that bond lending occurs mainly for dealers’ market making activities and the role

of speculative short sales by investors is limited. Therefore, short sale is positively related

with an increase in buying pressure of investors, which propels dealers to sell short to cater

to the customer demands. Thus, when a bond is more expensive, its price reduces buying

pressure from speculative investors, reducing the demand to borrow corporate bonds. This

is interesting because it is exactly the opposite of what would happen in the equity market,

where it is less costly to sell short the security. In a low-cost environment, speculators will

try to take advantage of overvalued securities by selling them short, thereby increasing the

demand to borrow the security.

Because the motivation to sell short is to provide liquidity in bond trading, an increase

in passive ownership reduces the demand to borrow bonds. At the same time, since passive

funds are the natural lenders of the security, it increases the lendable supply, resulting in

a reduction in borrowing fees. Our analysis based on the large panel data reveals that the

decline in demand dominates the increase in supply, resulting in a small reduction in the

equilibrium quantity of bonds borrowed.
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Figure 1: Security Lending Supply and Demand
This figure illustrates the supply and demand curves for security lending markets. In Panel A, we
consider an increase in passive ownership, which leads to a decreased quantity on loan and lower
fees. In Panel B, we consider an increase in insurance ownership, which leads to an increase in
quantity on loan and lower fees.
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Figure 2: Time Series Plots of Bond Ownership
This figure plots the four-quarter moving average percentage ownership of corporate bonds included
in our baseline quarterly panel data for each investor type from 2006 Q3 to 2022 Q4. The dotted
green line plots holdings by insurance companies. The dashed blue line plots the share of bonds
held by active mutual funds. The solid red line plots the share of bonds held by passive mutual
funds, including index funds and ETFs. The holdings data are from eMAXX, and the amount
outstanding data are from Mergent FISD. The details on sample construction can be found in
Section 2.
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Figure 3: Time Series Plots of Bond Lending Activities
This figure plots the average lending market outcomes of corporate bonds included in our baseline
quarterly panel data from 2006 Q3 to 2022 Q4. The solid blue line represents the whole sample,
while the dashed green and dot red lines display investment grade and high yield bonds, respectively.
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Figure 4: Panel Regression of Dollar Trading Volume on Changes in Quantity
on Loan

This figure plots the slope coefficients of the panel regression of dealer-customer trading volume on
the day d+ h on the day d changes in quantity on loan. Trading volume and quantity on loan are
scaled by the amount outstanding. The y-axis represents a change in the percentage of the scaled
dollar trading volume as a result of a one percentage change in the scaled quantity on loan. Panel
A is for all bonds up to Sep 4, 2017, and Panel B is for all bonds after Sep 5, 2017.
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Figure 5: Investor Ownership and Bond Lending around Maturity Cutoffs
The figure plots the slope coefficients βh from the following regression for h ∈ [−4, 24]

∆Outcomet−1→t+h
i = βhSwitchi,t + Controlsi,t−1 + αt + γi + εhi,t,

where ∆Outcomet−1→t+h
i is the change of investor ownership and lending variables for bond i from

t − 1 to t + h. Switchi,t is an indicator variable equal to one if bond i crosses any one of the
maturity cutoffs (i.e., 10 years, 5 years, and 3 years) in month t, and 0 otherwise. Thus, the y-axis
represents the change of outcome variables relative to the pre-crossing level after a bond crosses
the maturity cutoffs. Control variables include the log of the amount outstanding, credit rating,
time to maturity, and the percentage of zero trading days. Each regression includes bond and
year-month fixed effects. Error bars represent the two-standard-error confidence intervals, where
standard errors are clustered at both the bond and year-month levels.
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Table 1: Descriptive Statistics
This table reports the summary statistics of the main variables at the bond-quarter level. We com-
pute quarterly averages of daily bond lending variables for each bond unless mentioned otherwise.
Loan Quantity is defined as the quantity on loan from Markit divided by amount outstanding from
Mergent FISD. Lendable Supply is the active lendable quantity from Markit divided by amount
outstanding. Utilization Rate is defined as the ratio of the quantity on loan to the lendable quan-
tity. Loan Tenure is the average number of days that bond loans have been open. Borrowing
Fee is the buy-side fee paid by the ultimate borrower (“IndicativeFee” in Markit). Rebate Rate is
the “IndicativeRebate” in Markit. DCBS is the cost of borrow score provided by Markit, ranging
from 1 (low cost) to 10 (high cost). Fee Risk is the natural logarithm of the standard deviation
of borrowing fees within a calendar quarter. Recall Risk is the natural logarithm of the standard
deviation of utilization rate in a given quarter. Lender Concentration is a Herfindahl-Index-like
measure at the bond level provided by Markit that describes the concentration of lenders. Special1
is a dummy variable that equals one if at least one day with borrowing fee exceeds or equal to 1%
in a quarter, and zero otherwise. Special2 is a dummy variable that equals one in a given quarter if
its borrowing fee is in the top decile of the fee distribution across bonds, and zero otherwise. Credit
Spread is calculated as the average difference between the corporate bond yield and the yield of
a matching Treasury bond within a quarter. hBuy (hSell) is half spread from the customer buy
(sell) side, defined as the quarterly average of the log price differences between customer buy (sell)
trades and inter-dealer trades following O’Hara and Zhou (2021). We match customer buy (sell)
trades with the closest in-time inter-dealer trade over the past five trading days with replacement.
Total Ownership is the share of bonds held by all the investors in eMAXX. Insurer and Mutual
Fund are the shares of bonds held by insurance firms and mutual funds, respectively. We use the
investor type classification code provided by eMAXX to group investors into insurance firms and
mutual funds. We manually link eMAXX to the CRSP Mutual Fund database by matching funds
based on their names and use index fund and ETF flags (as well as search keywords in fund names)
to further decompose mutual fund ownership into Passive Fund (i.e., index funds and ETFs) and
Active Fund. Amount is the amount of bonds outstanding in millions of dollars. Rating is the
numerical rating score, where 1 refers to a AAA rating by S&P and Aaa by Moody’s, 21 refers to
a C rating for both S&P and Moody’s. Age is the age of a bond in years. Maturity is the time to
maturity in years. ZTD is the percentage of zero trading days in a given quarter. To mitigate the
influence of outliers, we winsorize variables at 1% and 99% for each quarter. The combined bond
data are from Mergent FISD, TRACE, Markit, and eMAXX. The sample includes 17,235 bonds
across 1,706 firms from 2006 Q3 to 2022 Q4.
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Variable Mean SD P1 P25 P50 P75 P99 IQR Obs

Loan Quantity (%) 1.45 2.59 0.01 0.16 0.51 1.51 12.06 1.35 296,211
Lendable Supply (%) 23.72 10.96 1.68 16.36 22.69 29.71 56.91 13.35 296,211
Utilization Rate (%) 6.73 12.03 0.03 0.78 2.46 7.00 65.44 6.22 296,211
Loan Tenure (days) 74.78 87.80 1.00 23.29 44.19 89.28 462.32 65.99 296,211
Borrowing Fee (%) 0.44 0.49 0.18 0.28 0.37 0.40 2.96 0.13 296,211
Rebate Rate (%) 0.56 1.45 −2.12 −0.25 −0.12 1.08 4.90 1.33 296,211
DCBS 1.06 0.29 1.00 1.00 1.00 1.00 2.78 0.00 296,211
Fee Risk −2.85 1.01 −5.26 −3.45 −2.90 −2.48 0.14 0.97 251,697
Recall Risk −0.29 1.75 −6.66 −1.08 0.01 0.86 2.68 1.93 289,670
Lender Concentration 0.49 0.32 0.00 0.29 0.49 0.73 1.00 0.44 296,211
Special1 (fee ≥ 1%) 0.14 0.34 0.00 0.00 0.00 0.00 1.00 0.00 296,211
Special2 (top decile) 0.10 0.30 0.00 0.00 0.00 0.00 1.00 0.00 296,211
Credit Spread (%) 2.13 2.67 0.23 0.88 1.41 2.40 11.54 1.52 291,571
hBuy (%) 0.28 0.88 −1.59 0.01 0.15 0.43 3.15 0.43 284,345
hSell (%) 0.27 0.97 −2.11 0.00 0.16 0.45 3.09 0.45 282,873
Total Ownership (%) 45.70 17.58 8.82 33.19 45.18 57.71 86.73 24.52 296,211
Insurer (%) 31.41 20.72 0.40 14.04 28.40 46.03 82.19 32.00 296,211
Mutual Fund (%) 13.94 12.33 0.00 4.84 10.52 19.47 53.48 14.63 296,211
Passive Fund (%) 3.63 4.40 0.00 0.49 2.60 5.40 16.51 4.91 296,211
Active Fund (%) 10.28 11.41 0.00 1.96 6.19 14.48 49.12 12.52 296,211
Amount ($ mil) 676 568 100 300 500 775 3,000 475 296,211
Rating 8.45 3.10 1.50 6.50 8.00 10.00 17.00 3.50 296,211
Age (years) 4.94 4.48 0.32 1.80 3.64 6.61 21.45 4.82 296,211
Maturity (years) 9.96 8.68 1.13 3.71 6.55 14.27 29.69 10.56 296,211
ZTD (%) 34.88 29.86 0.00 6.35 28.57 59.38 96.83 53.03 296,211
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Table 2: Passive Ownership and Bond Lending Activities
This table presents the results from regressing bond lending outcomes and credit spreads on own-
ership of institutional investors. The dependent variables are quarterly averages of loan quantity,
lendable supply, borrowing fee, DCBS, and credit spread. Passive Fund, Active Fund, and Insurer
represent factions of bond par amount held by passive mutual funds, actively managed mutual
funds, and insurance firms, respectively. Bond control variables include the log value of amount
outstanding, rating, time to maturity, and the fraction of zero-trading days. The variable defini-
tions can be found in Table 1. We include bond and firm × quarter effects in each regression. We
double cluster standard errors by firm and year-quarter, and t-statistics are in parentheses. *, **,
and *** indicate the significance at the 10%, 5%, and 1% levels, respectively. The sample period
is from 2006 Q3 to 2022 Q4.

Loan Quatity Lendable Supply Borrowing Fee DCBS Credit Spread
(1) (2) (3) (4) (5)

Panel A: Passive Funds Only

Passive Fund −0.0087*** 0.0749*** −0.0041*** −0.0022*** −0.0042***

(−2.94) (5.53) (−3.44) (−3.20) (−2.76)

Bond Controls Yes Yes Yes Yes Yes
Firm×Qtr FE Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes
Observations 280,330 280,330 280,330 280,330 275,701
Adjusted R2 0.598 0.811 0.465 0.485 0.952

Panel B: Passive Funds Plus Other Investors

Passive Fund −0.0096*** 0.0719*** −0.0041*** −0.0022*** −0.0042***

(−3.23) (5.10) (−3.41) (−3.18) (−2.86)

Active Fund 0.0295*** 0.0962*** −0.0001 −0.0000 0.0001
(11.28) (8.12) (−0.18) (−0.18) (0.08)

Insurer 0.0192*** 0.1004*** −0.0011** −0.0005** 0.0070***

(5.13) (9.22) (−2.48) (−2.16) (8.37)

Bond Controls Yes Yes Yes Yes Yes
Firm×Qtr FE Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes
Observations 280,330 280,330 280,330 280,330 275,701
Adjusted R2 0.602 0.814 0.465 0.486 0.953
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Table 3: Passive Ownership and Bond Lending Activities, Subsample Results by Specialness
This table presents the results from regressing bond lending outcomes and credit spreads on ownership of institutional investors. The
results are separately reported for special bonds and general collateral (GC) bonds. A bond is defined as special in a given quarter if its
lagged borrowing fee is in the top decile of the fee distribution across bonds, and as GC, otherwise. Bond control variables include the
log value of amount outstanding, rating, time to maturity, and the fraction of zero-trading days. All continuous independent variables
are standardized to have a mean of zero and a standard deviation of one. We include bond and firm × quarter effects in each regression.
We double cluster standard errors by firm and year-quarter, and t-statistics are in parentheses. *, **, and *** indicate the significance
at the 10%, 5%, and 1% levels, respectively. The sample period is from 2006 Q3 to 2022 Q4.

Special GC

Loan Lendable Borrowing DCBS Credit Loan Lendable Borrowing DCBS Credit
Quantity Supply Fee Spread Quantity Supply Fee Spread

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Passive Funds Only

Passive Fund 0.086 1.495*** −0.187*** −0.114*** −0.036 −0.034*** 0.243*** −0.004*** −0.001** −0.014**

(0.62) (3.99) (−3.50) (−3.21) (−0.63) (−2.78) (5.30) (−3.07) (−2.03) (−2.13)

Bond Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm×Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 12,463 12,463 12,463 12,463 11,987 243,516 243,516 243,516 243,516 240,026
Adjusted R2 0.769 0.756 0.609 0.616 0.959 0.572 0.832 0.238 0.157 0.953

Panel B: Passive Funds Plus Other Investors

Passive Fund 0.043 1.407*** −0.185*** −0.113*** −0.039 −0.037*** 0.233*** −0.004*** −0.001** −0.014**

(0.30) (3.99) (−3.46) (−3.17) (−0.69) (−3.00) (4.88) (−3.05) (−2.04) (−2.24)

Active Fund 0.501*** 0.927*** −0.027 −0.010 0.021 0.275*** 1.023*** 0.001 0.001 0.017
(4.25) (4.65) (−0.77) (−0.48) (0.33) (9.72) (7.54) (0.38) (0.73) (1.64)

Insurer 0.3757* 1.796*** −0.053 −0.004 0.190 0.364*** 2.020*** −0.003 −0.000 0.158***

(1.82) (3.81) (−0.64) (−0.07) (1.30) (4.56) (9.46) (−0.83) (−0.10) (9.36)

Bond Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm×Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 12,463 12,463 12,463 12,463 11,987 243,516 243,516 243,516 243,516 240,026
Adjusted R2 0.774 0.759 0.609 0.616 0.959 0.575 0.835 0.238 0.157 0.953
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Table 4: Passive Ownership and Bond Lending Activities, Subsample Results by Credit Rating
This table presents the results from regressing bond lending outcomes and credit spreads on ownership of institutional investors. The
results are separately reported for investment grade (IG) and high yield (HY) bonds. A bond is defined as high yiled if its credit rating
at the end of last quarter is below BBB, and as investment grade, otherwise. Bond control variables include the log value of amount
outstanding, rating, time to maturity, and the fraction of zero-trading days. All continuous independent variables are standardized to
have a mean of zero and a standard deviation of one. We include bond and firm × quarter effects in each regression. We double cluster
standard errors by firm and year-quarter, and t-statistics are in parentheses. *, **, and *** indicate the significance at the 10%, 5%, and
1% levels, respectively. The sample period is from 2006 Q3 to 2022 Q4.

IG HY

Loan Lendable Borrowing DCBS Credit Loan Lendable Borrowing DCBS Credit
Quantity Supply Fee Spread Quantity Supply Fee Spread

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Passive Funds Only

Passive Fund −0.035** 0.286*** −0.015*** −0.008*** −0.010* −0.055 0.814*** −0.052*** −0.031*** −0.076**

(−2.60) (5.27) (−3.20) (−2.86) (−1.80) (−0.97) (3.66) (−3.66) (−3.75) (−2.55)

Bond Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm×Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 233,432 233,432 233,432 233,432 229,301 46,107 46,107 46,107 46,107 45,604
Adjusted R2 0.569 0.819 0.313 0.324 0.930 0.665 0.802 0.705 0.692 0.950

Panel B: Passive Funds Plus Other Investors

Passive Fund −0.039*** 0.268*** −0.015*** −0.008*** −0.011* −0.068 0.800*** −0.052*** −0.031*** −0.076**

(−2.86) (4.84) (−3.21) (−2.88) (−1.95) (−1.22) (3.63) (−3.65) (−3.73) (−2.52)

Active Fund 0.256*** 1.178*** 0.012* 0.007** 0.012 0.397*** 0.962*** −0.012 −0.008 0.018
(7.34) (7.25) (1.96) (2.10) (1.33) (10.21) (4.90) (−1.44) (−1.40) (0.88)

Insurer 0.363*** 1.836*** −0.015 −0.006 0.147*** 0.370** 2.924*** −0.026 −0.020 0.165**

(4.42) (8.48) (−1.66) (−1.19) (10.40) (2.46) (6.08) (−0.94) (−1.07) (2.28)

Bond Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm×Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 233,432 233,432 233,432 233,432 229,301 46,107 46,107 46,107 46,107 45,604
Adjusted R2 0.572 0.821 0.314 0.324 0.931 0.670 0.807 0.705 0.692 0.950

37



Table 5: Panel Regression of Daily Changes in Quantity on Loan
This table reports the estimates from the panel regression of changes in the quantity on loan for
all bonds:

dQi,t = βXi,t + ρdQi,t−5,t−1 + αt + γi + εi,t,

where a set of explanatory variables includes the daily return rt, the average of the past 5 days’
returns rt−5,t−1, the turnover rate of customer buy (TurnBuy) and sell (TurnBuy) on day t and
averages from t−5, t−1, half spreads for buy trades (hbuy) and sell trades (hsell) averaged from day
t−5 to t−1, and standard deviation of returns over the last five days σ(r)t−5,t−1. Daily changes in
the amount outstanding are scaled by the amount outstanding of the bond on day t and expressed
as a percentage. Bond controls include the natural logarithm of the amount outstanding, credit
ratings, and time to maturity. The variables on the right-hand side are standardized so that they
have a mean of zero and a standard deviation of one. We include bond and date fixed effects in
each regression specification. We double cluster standard errors by bond and date, and t-statistic
are given in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
levels, respectively. We require each bond to have at least 252 daily observations in the regression.
The sample includes 11,411 bonds across 1,259 firms from September 13, 2006 to December 30,
2022.

(1) (2) (3) (4) (5) (6)

rt 0.0021*** 0.0022*** 0.0016***

(9.86) (10.18) (8.07)

rt−5,t−1 0.0003* 0.0007*** 0.0013***

(1.81) (3.79) (7.23)

dQt−5,t−1 −0.0139*** −0.0167*** −0.0143*** −0.0167***

(−22.92) (−25.93) (−23.75) (−25.97)

TurnBuy
t 0.0454*** 0.0458*** 0.0441*** 0.0458***

(111.84) (112.22) (109.61) (112.07)

TurnSell
t −0.0390*** −0.0389*** −0.0394*** −0.0389***

(−121.86) (−121.68) (−122.44) (−121.69)

TurnBuy
t−5,t−1 0.0003 0.0060*** 0.0060***

(1.48) (20.20) (20.18)

TurnSell
t−5,t−1 −0.0107*** −0.0165*** −0.0164***

(−61.98) (−55.52) (−55.28)

hBuy
t−5,t−1 −0.0001 −0.0001 −0.0002**

(−0.85) (−1.09) (−1.89)

hSellt−5,t−1 −0.0000 −0.0001 0.0003***

(−0.03) (−0.60) (3.21)

σ(r)t−5,t−1 −0.0021*** −0.0011***

(−9.09) (−5.54)

Bond Controls Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Observations 10,693,324 10,693,324 10,693,324 10,693,324 10,693,324 10,693,324
Adjusted R2 0.010 0.015 0.052 0.059 0.055 0.059
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Table 6: Investor Ownership and Bond Lending Activities around Maturity Cutoffs
The figure plots the slope coefficients βh from the following regression for h ∈ [−4, 24]

∆Outcomet−1→t+h
i = βhSwitchi,t + Controlsi,t−1 + αt + γi + εhi,t,

where ∆Outcomet−1→t+h
i is the change of investor ownership and lending variables for bond i from t−1 to t+h. We require the outcome

variable changes to be available for all h. Switchi,t is an indicator variable equal to one if bond i crosses any one of the maturity cutoffs
(i.e., 10 years, 5 years, and 3 years) in month t, and 0 otherwise. Control variables include the log of the amount outstanding, credit
rating, time to maturity, and the percentage of zero trading days. Each regression includes bond and year-month fixed effects. We double
cluster standard errors by firm and year-month, and t-statistics are in parentheses. *, **, and *** indicate the significance at the 10%,
5%, and 1% levels, respectively. The sample includes 311,112 bond-month observations for 9,668 corporate bonds issued by 1,181 firms
from February 2007 to December 2022.

h −4 −3 −2 0 1 2 3 6 9 12 18 24

Panel A: LHV = ∆Passive Fund t−1→t+h

Switch 0.045* 0.038* 0.019 0.021 0.064*** 0.108*** 0.135*** 0.180*** 0.214*** 0.180*** 0.197*** 0.239***

(1.86) (1.74) (1.36) (1.56) (2.69) (3.20) (3.87) (4.57) (4.54) (3.17) (3.01) (3.79)

Panel B: LHV = ∆Active Fund t−1→t+h

Switch −0.049 0.004 0.007 0.013 −0.033 −0.177* −0.287*** −0.241** −0.139 −0.037 0.009 0.054
(−0.50) (0.04) (0.14) (0.24) (−0.43) (−1.82) (−2.93) (−2.22) (−1.38) (−0.39) (0.08) (0.44)

Panel C: LHV = ∆Insurer t−1→t+h

Switch 0.090 0.090* 0.041 0.002 0.009 0.001 0.012 −0.112* −0.170** −0.284*** −0.378*** −0.487***

(1.49) (1.72) (0.97) (0.06) (0.22) (0.02) (0.21) (−1.67) (−2.45) (−3.69) (−3.91) (−5.21)

Panel D: LHV = ∆Loan Quantity t−1→t+h

Switch −0.028 −0.000 −0.013 0.013 0.057*** 0.048** 0.060** 0.042 −0.017 −0.040 −0.110*** −0.119***

(−1.01) (−0.00) (−0.79) (0.97) (2.88) (2.01) (2.31) (1.34) (−0.47) (−1.04) (−2.98) (−2.92)

Panel E: LHV = ∆Lendable Supply t−1→t+h

Switch 0.176*** 0.138*** 0.064* −0.005 −0.002 −0.023 −0.075 −0.182** −0.183** −0.250** −0.227** −0.344***

(3.22) (2.99) (1.80) (−0.16) (−0.04) (−0.42) (−1.21) (−2.32) (−2.01) (−2.56) (−2.35) (−3.43)

Panel F: LHV = ∆Borrowing Feet−1→t+h

Switch 0.005 0.006* 0.006* −0.003 0.002 0.005 0.006 0.009 0.001 0.008 0.005 0.003
(1.17) (1.77) (1.80) (−1.01) (0.58) (1.07) (1.16) (1.44) (0.10) (1.07) (0.70) (0.36)
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Internet Appendix
“Passive Ownership and Corporate Bond Lending”

A Corporate Bond Filters

In this section, we describe our procedure to filter corporate bonds based on the Mergent
Fixed Income Securities Database (FISD) database and the Enhanced Trade Reporting and
Compliance Engine (TRACE) database from WRDS.

TRACE data contains transaction prices and volume, trade direction, and the exact date
and time of each trade. Following Dick-Nielsen (2014), we clean the TRACE data, remove
canceled transaction records, and adjust records that are subsequently corrected or reversed.
We also follow Bessembinder, Kahle, Maxwell, and Xu (2008) to correct potential data errors
and remove observations in enhanced TRACE data with large return reversals, defined as a
20% or greater return followed by a 20% or greater return of the opposite sign. We merge the
TRACE database with Mergent FISD to collect information on bond characteristics such as
amount outstanding, credit rating, and time to maturity.

Following the recent literature (e.g., Dickerson, Mueller, and Robotti 2023; Dick-Nielsen,
Feldhütter, Pedersen, and Stolborg 2023), we apply additional filters to eliminate (1) bonds
that are not listed or traded in the U.S. public market; (2) bonds that are U.S. Government,
private placements, mortgage-backed, asset-backed, agency-backed, or equity-linked;15 (3)
convertible bonds or bonds with a floating coupon rate or an odd frequency of coupon
payments; (4) bonds that have less than one year to maturity; (5) bond transactions that
are labeled as when-issued, locked-in, have special sales conditions, or have more than a
two-day settlement period; (6) transaction records with trade size larger than issue size or
trade size is not a integer; (7) bonds that do not have a principal value of $1,000; (8) bonds
with incomplete issuance information (offering date, amount, and maturity) or non-positive
historical amount outstanding (e.g., bonds are called); and (9) bonds that are not issued by
public firms (i.e., with a valid PERMNO from CRSP).

B Daily Bond Sample Construction

In this section, we provide further details on the construction of the daily bond panel data
used in Table 5.

After matching the daily Markit security lending data to the merged Mergent FISD-
TRACE bond sample as specified in Section A, we obtain 18,458,551 observations for 18,085
corporate bonds issued by 1,755 firms from September 11, 2006 to December 30, 2022.

Next, we move to construct customer buy/sell volume. Enhanced TRACE records the
direction of trades from the reporting dealers’ perspective. Thus, for each customer-dealer

15Following Dick-Nielsen, Feldhütter, Pedersen, and Stolborg (2023), we define equity-linked bonds, as
bonds whose field “issue name” contains any of the strings “EQUITYLINKED”, “EQUITY LINKED”, and
“INDEX-LINKED”.
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trade, we treat dealer-buy trades as customer sales and dealer-sell trades as customer buys.
We treat missing trading volume and customer buy/sell trade observations in TRACE as
zero volume when computing bonds’ transaction volume. To distinguish zero volume from
missing observations, we first create empty panel data by setting the beginning and ending
dates for an initial list of bonds in the sample, which is determined by the intersection of the
three databases (TRACE, Mergent FISD, and Markit) we use. For the list of trading days,
we use those in CRSP and exclude bond trades recorded on the days when stock markets
are closed.16 The beginning and ending dates for each bond are set by its issuance date and
maturity date or the last call date. We then merge TRACE volume to the empty panel to
determine which days have zero volume.

To obtain an estimate of transaction cost, we follow O’Hara and Zhou (2021) and match
each customer buy/sell trade with the closest in time inter-dealer trade in that bond over
the past five trading days. We construct half spreads for both the customer buy side and sell
side as the volume-weighted average of the log price differences between customer buy/sell
trades and inter-dealer trades. Moreover, to mitigate the microstructure noise, we compute
daily bond returns and volatility using quote prices from the Bank of America Merrill Lynch
(BAML) database provided by the Intercontinental Exchange (ICE).

The SEC announced on March 22, 2017, that the settlement cycle (i.e., the time between
the transaction date and the settlement date) for most broker-dealer securities transactions
will change from three business days (i.e., T+3) to two business days (i.e., T+2) on September
5, 2017. Thus, to account for these settlement gaps, we adjust trading volume, bond returns,
and half spreads on day d by day d−3 values for the sample up to September 4, 2017 and by
day d − 2 values after September 5, 2017. Then, we compute return volatility and five-day
moving averages based on the “adjusted” variables.

We require each bond to have at least 252 daily observations after merging daily bond
lending data, trading volume, half spreads, and bond returns data. The final sample in-
cludes 10,693,324 bond-day observations for 11,411 corporate bonds across 1,259 firms from
September 13, 2006 to December 30, 2022. We winsorize continuous variables at 1% and
99% by month to mitigate the effects of outliers while avoiding look-ahead bias. Table A1,
Panel A reports the descriptive statistics for the daily bond panel data.

C Monthly Bond Sample Construction

In this section, we provide further details on the construction of the monthly bond panel
data used in Figure 5.

We start with the daily Markit bond lending data (after matching with the merged
Mergent FISD-TRACE bond sample) and compute the monthly average of lending outcome
variables by averaging the daily Markit data within each bond-month observation. Following
Bretscher, Schmid, and Ye (2024b), we further exclude bonds that were issued less than 6
months ago. We obtain 815,719 observations for 17,214 corporate bonds issued by 1,718
firms over 196 months from September 2006 to December 2022.

16This choice excludes some sparse trades on weekends but includes more trading days than Treasury
market data.
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Next, we match the monthly bond lending data to the quarterly holdings data from
eMAXX based on the bond CUSIPs and calendar quarters. We define a Switch indicator
that equals one if a bond crosses one of the there cutoffs: 10-, 5-, and 3-year time to maturity.
We compute the change of passive ownership and lending outcome variables from month t−1
to month t− h and require all the outcome variable changes to be available for h ∈ [−4, 24].
These filters lead to a final sample of 311,378 bond-month observations for 9,668 corporate
bonds across 1,181 firms from February 2007 to December 2022. We winsorize continuous
variables at 1% and 99% by month. Table A1, Panel B reports the descriptive statistics for
the monthly bond panel data.
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Figure A1: Panel Regression of Dollar Trading Volume on Changes in Quantity
on Loan, IG vs HY

The figure plots the slope coefficients of the panel regression of dealer-customer trading volume on
day d + h on day d changes in quantity on loan. Trading volume and quantity on loan are scaled
by the amount outstanding. The y-axis represents a change in the percentage of the scaled dollar
trading volume as a result of a one percentage change in the scaled quantity on loan. Subfigures
(a) to (b) are for investment grade and high yield bonds up to Sep 4, 2017. Subfigures (c) to (d)
are for investment grade and high yield bonds after Sep 5, 2017.
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Table A1: Descriptive Statistics of Daily and Monthly Panels
This table reports the summary statistics of the main variables at the bond-day and bond-month
levels. The combined bond data are from Mergent FISD, TRACE, Markit, and eMAXX. The defi-
nitions of common bond characteristics are the same: Amount is the amount of bonds outstanding
in millions of dollars; Rating is the numerical rating score, where 1 refers to a AAA rating by S&P
and Aaa by Moody’s, 21 refers to a C rating for both S&P and Moody’s; Age is the age of a bond
in years; Maturity is the time to maturity in years. Panel A shows the descriptive statistics of the
sample used in Table 5, which includes 11,411 bonds across 1,259 firms from September 13, 2006
to December 30, 2022. dQ is the changes in quantity on loan scaled by the amount outstanding.
The explanatory variables includes the daily return rt, the average of the past 5 days’ returns
rt−5,t−1, the turnover rate of customer buy (TurnBuy) and sell (TurnBuy) on day t and averages
from t− 5, t− 1, half spreads for buy trades (hbuy) and sell trades (hsell) averaged from day t− 5
to t − 1, and standard deviation of returns over the last five days σ(r)t−5,t−1. Panel B shows the
summary statistics of the sample used in Figure 5, which includes 9,668 bonds across 1,181 firms
from February 2007 to December 2022. We compute monthly averages of daily bond lending vari-
ables for each bond unless mentioned otherwise. Loan Quantity is defined as the quantity on loan
from Markit divided by amount outstanding. Lendable Supply is the active lendable quantity from
Markit divided by amount outstanding. Utilization Rate is defined as the ratio of the quantity
on loan to the lendable quantity. Loan Tenure is the average number of days that bond loans
have been open. Borrowing Fee is the buy-side fee paid by the ultimate borrower (“IndicativeFee”
in Markit). Rebate Rate is the “IndicativeRebate” in Markit. DCBS is the cost of borrow score
provided by Markit, ranging from 1 (low cost) to 10 (high cost). Fee Risk is the natural logarithm
of the standard deviation of borrowing fees within a month. Recall Risk is the natural logarithm of
the standard deviation of utilization rate in a given month. Lender Concentration is a Herfindahl-
Index-like measure at the bond level provided by Markit that describes the concentration of lenders.
Special1 is a dummy variable that equals one if at least one day with borrowing fee exceeds or equal
to 1% in a month, and zero otherwise. Special2 is a dummy variable that equals one in a given
month if its borrowing fee is in the top decile of the fee distribution across bonds, and zero other-
wise. Credit Spread is calculated as the average difference between the corporate bond yield and
the yield of a matching Treasury bond within a month. hBuy (hSell) is the monthly average of the
log price differences between customer buy (sell) trades and inter-dealer trades following O’Hara
and Zhou (2021). We match customer buy (sell) trades with the closest in time inter-dealer trade
over the past five trading days with replacement. Total Ownership is the share of bonds held by
all the investors in eMAXX. Passive Fund, Active Fund, and Insurer represent factions of bond
par amount held by passive mutual funds, actively managed mutual funds, and insurance firms,
respectively. We use the investor type classification code provided by eMAXX to group investors
into insurance firms and mutual funds. We manually link eMAXX to the CRSP Mutual Fund
database by matching funds based on their names and use index fund and ETF flags (as well as
search keywords in fund names) to further decompose mutual fund ownership into Passive Fund
(i.e., index funds and ETFs) and Active Fund. To mitigate the influence of outliers, we winsorize
variables at 1% and 99% for each period.
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Variable Mean SD P1 P25 P50 P75 P99 Obs

Panel A: Daily Bond Panel

dQ −0.002 0.198 −0.719 −0.011 0.000 0.007 0.732 10,693,324
dQt−5,t−1 −0.001 0.093 −0.313 −0.016 0.000 0.013 0.322 10,693,324
rt 0.016 0.765 −1.732 −0.143 0.017 0.181 1.759 10,693,324
rt−5,t−1 0.017 0.351 −0.847 −0.056 0.016 0.099 0.838 10,693,324
σ(r) 0.421 0.645 0.018 0.138 0.274 0.513 2.399 10,693,324
Amount ($ mil) 875 640 250 500 700 1,000 3,250 10,693,324
Rating 8.464 3.205 1.000 6.000 8.000 10.000 17.000 10,693,324
Age (years) 4.003 3.476 0.173 1.521 3.115 5.540 17.674 10,693,324
Maturity (years) 8.667 7.824 1.151 3.515 5.926 9.219 29.425 10,693,324
TurnBuy 0.189 0.442 0.000 0.001 0.026 0.145 2.320 10,693,324
TurnSell 0.117 0.330 0.000 0.000 0.004 0.049 1.818 10,693,324

TurnBuy
t−5,t−1 0.208 0.297 0.002 0.033 0.099 0.255 1.468 10,693,324

TurnSell
t−5,t−1 0.133 0.215 0.000 0.011 0.046 0.161 1.068 10,693,324

hBuy
t−5,t−1 0.390 0.770 −1.088 0.058 0.226 0.570 2.925 10,693,324

hSellt−5,t−1 0.357 0.804 −1.190 0.048 0.211 0.520 3.013 10,693,324

Panel B: Monthly Bond Panel

Loan Quantity (%) 1.555 2.599 0.008 0.192 0.593 1.691 12.376 311,378
Lendable Supply (%) 24.767 9.904 4.738 18.134 23.834 30.180 54.620 311,378
Utilization Rate (%) 6.879 11.950 0.035 0.850 2.624 7.281 66.203 311,378
Loan Tenure (days) 81.966 91.301 4.238 25.427 51.259 101.851 485.169 311,378
Borrowing Fee (%) 0.402 0.323 0.162 0.287 0.375 0.392 2.085 311,378
Rebate Rate (%) 0.495 1.214 −1.412 −0.249 −0.105 1.203 4.901 311,378
DCBS 1.035 0.207 1.000 1.000 1.000 1.000 2.000 311,378
Fee Risk −3.016 0.959 −6.220 −3.552 −2.985 −2.645 −0.363 221,285
Recall Risk −0.971 1.879 −8.357 −1.800 −0.682 0.233 2.106 307,892
Lender Concentration 0.451 0.301 0.000 0.264 0.444 0.659 1.000 311,378
TurnBuy (%) 0.144 0.170 0.000 0.034 0.090 0.189 0.846 311,378
TurnSell (%) 0.095 0.119 0.000 0.018 0.055 0.126 0.586 311,378
hBuy(%) 0.334 0.917 −1.631 0.013 0.201 0.540 3.258 287,492
hSell(%) 0.283 0.989 −2.069 −0.026 0.188 0.510 3.353 287,540
Total Ownership (%) 46.599 15.784 13.432 35.302 46.250 57.326 84.883 311,378
Insurer (%) 32.629 18.584 1.588 17.356 31.005 45.673 78.953 311,378
Passive Fund (%) 3.727 4.648 0.000 1.099 2.837 5.044 23.387 311,378
Active Fund (%) 9.938 11.040 0.000 2.197 5.914 13.479 48.597 311,378
Amount ($ mil) 788 608 150 400 563 1,000 3,000 311,378
Rating 8.195 2.946 2.000 6.000 8.000 9.500 16.500 311,378
Age (years) 4.476 3.656 0.962 1.956 3.488 5.633 19.115 311,378
Maturity (years) 11.313 8.537 3.082 5.110 7.384 18.345 29.099 311,378
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Table A2: Sample List of Passive Funds in eMAXX
This table lists the top 25 passive funds in eMAXX as of 2022 in terms of the number of distinct
corporate bonds held. We select passive funds based on index fund and ETF/ETN flags from
the CRSP Mutual Fund database after manually matching eMAXX FUNDID to funds in CRSP
by fund names. We further identify passive funds by searching keywords in fund names related
to ETFs/index funds/bond index providers. We restrict corporate bond holdings to dollar bonds
issued by US firms that have trade records in the Enhanced TRACE database.

Obs FUNDID FUNDNAME

1 170047 iShares Core Total USD Bond Market ETF
2 126137 iShares Broad USD Investment Grade Corporate Bond ETF
3 81464 iShares Core US Aggregate Bond ETF
4 189653 Vanguard USD Corporate Bond UCITS ETF
5 29844 Vanguard Total Bond Market Index Fund
6 136739 Vanguard Total Bond Market II Index Fund
7 156760 Schwab US Aggregate Bond ETF
8 29969 Vanguard Balanced Index Fund
9 191887 Schwab US Aggregate Bond Index Fund
10 142023 TIAACREF Bond Index Fund
11 29242 Vanguard Total Bond Market Index Portfolio
12 44906 U.S. Total Bond Index Master Portfolio
13 136745 SPDR Barclays Intermediate Term Corporate Bond ETF
14 126141 iShares Intermediate Government/Credit Bond ETF
15 153656 SPDR Barclays Issuer Scored Corporate Bond ETF
16 133663 LVIP SSgA Bond Index Fund
17 191555 iShares ESG Aware USD Corporate Bond ETF
18 126144 iShares Government/Credit Bond ETF
19 191556 iShares ESG Aware US Aggregate Bond ETF
20 195989 Vanguard Global Aggregate Bond UCITS ETF
21 174293 State Street Aggregate Bond Index Portfolio
22 144043 iShares 10+ Year Investment Grade Corporate Bond ETF
23 32593 EQ/Core Bond Index Portfolio
24 136743 SPDR Barclays Long Term Corporate Bond ETF
25 123766 iShares 1-3 Year Credit Bond ETF
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Table A3: Passive Ownership and Other Lending Outcomes
This table presents the results from regressing other bond lending outcomes on ownership of insti-
tutional investors. The dependent variables are quarterly averages of utilization rate, loan tenure,
fee risk, recall risk, and half spreads. Passive Fund, Active Fund, and Insurer represent factions
of bond par amount held by passive mutual funds, actively managed mutual funds, and insurance
firms, respectively. Bond control variables include the log value of amount outstanding, rating, time
to maturity, and the fraction of zero-trading days. The variable definitions can be found in Table
1. All continuous independent variables are standardized to have a mean of zero and a standard
deviation of one. We include bond and firm × quarter effects in each regression. We double cluster
standard errors by firm and year-quarter, and t-statistics are in parentheses. *, **, and *** indicate
the significance at the 10%, 5%, and 1% levels, respectively. The sample period is from 2006 Q3
to 2022 Q4.

Utilization Loan Tenure Fee Risk Recall Risk hBuy hSell

(1) (2) (3) (4) (5) (6)

Panel A: Passive Funds Only

Passive Fund −0.257*** −0.214 0.025*** −0.026*** 0.011** −0.007
(−3.95) (−0.74) (4.12) (−3.37) (2.59) (−1.53)

Bond Controls Yes Yes Yes Yes Yes Yes
Firm×Qtr FE Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes
Observations 280,330 280,330 236,392 274,079 268,866 267,494
Adjusted R2 0.629 0.381 0.353 0.502 0.259 0.272

Panel B: Passive Funds Plus Other Investors

Passive Fund −0.270*** −0.221 0.025*** −0.026*** 0.011** −0.008
(−4.12) (−0.74) (4.10) (−3.35) (2.63) (−1.58)

Active Fund 0.985*** 0.575 −0.010 0.041*** −0.026*** 0.016**

(7.11) (0.86) (−0.94) (2.81) (−4.22) (2.31)

Insurer 0.638*** 10.778*** −0.029* −0.129*** 0.065*** 0.038***

(3.32) (6.10) (−1.75) (−4.78) (6.38) (3.25)

Bond Controls Yes Yes Yes Yes Yes Yes
Firm×Qtr FE Yes Yes Yes Yes Yes Yes
Bond FE Yes Yes Yes Yes Yes Yes
Observations 280,330 280,330 236,392 274,079 268,866 267,494
Adjusted R2 0.631 0.381 0.353 0.502 0.259 0.272
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1 Introduction

Intermediary asset pricing suggests that frictions faced by financial intermediaries can constrain

arbitrage and influence asset prices (e.g., Shleifer and Vishny (1997); Gromb and Vayanos

(2002); Brunnermeier and Pedersen (2009); He and Krishnamurthy (2013); Brunnermeier

and Sannikov (2014)). Most models assume frictionless markets, akin to a Walrasian auction.

Consequently, the related empirical literature largely overlooks frictions arising from market

fragmentation (e.g., Pasquariello (2014); Adrian et al. (2014); Du et al. (2018); He et al.

(2017); Siriwardane et al. (2022)). This contrasts with the fragmented nature of financial

markets, where different asset classes trade in distinct venues (Malamud and Rostek (2017);

Weill (2020); Chen and Duffie (2021); Budish et al. (2024)). Moreover, since financial assets

are treated as homogenous, the literature tends to overlook the diversity of financial products

and, consequently, the role of product specialization (Babus and Hachem (2023); Babus et al.

(2024); Mota and Siani (2024)).

We introduce a unique dataset to study the role of market and product ‘segmentation’—or

equivalently, ‘specialization’—in financial markets to provide novel stylized facts that inform

future asset pricing models. By linking trades across Canadian stock, bond, and derivative mar-

kets, we analyze cross-market and cross-product specialization by examining where, what and

at what prices brokers and dealers trade, offering insights into the returns to specialization.1

Cross-market specialization may arise from differences in market clearing rules or entry costs,

while cross-product specialization within a market—where such frictions are absent—may in-

stead reflect differences in trading expertise, relationships, or client preferences.

Our dataset covers all trades executed on Canada’s fixed-income market and all exchanges

owned by the Toronto Stock Exchange Group (TMX) from 2019 to 2022. TMX owns three stock

exchanges, which account for roughly 60 percent of equity trade volume in Canada, and the

country’s only derivatives exchange. A key feature of this dataset is the ability to track dealers

over time and across markets using legal entity identifiers (LEIs)—an attribute rarely available

in trade-level datasets, particularly for stocks and derivatives. We link this information to public

data in order to classify securities into products, for instance, corporate bonds, large-cap stocks,

Exchange Traded Funds (ETFs), and Treasury futures. Additionally, we manually assign dealers

to their parent institutions, i.e., the LEIs of their holding companies, and categorize them by

1An alternative label for the institutions analyzed in this paper is ‘market-maker.’ We avoid this term
because the small set of financial institutions that dominate trading—the set we study in this paper—
engage in activities beyond market-making, including executing trades for clients and responding to
client needs. For instance, on exchanges, only a small set of firms are formally designated as market
makers with an obligation to provide liquidity.
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type, such as primary dealers or hedge funds.

Using these data, we establish three stylized facts about specialization. The first demon-

strates its existence and quantifies its extent: dealers allocate their trading activity unevenly

across markets and products—they specialize.

To quantify market specialization, we construct dealer-specific market specialization scores,

which range from zero (no trades in a market) to one (exclusive trading within it). Banks

tend to concentrate in bonds, high-frequency traders in derivatives, and primary dealers in

government debt are the most active across markets. A similar pattern emerges within markets:

trading is unevenly distributed across product segments, reflecting product specialization. We

capture this using a dealer-specific product specialization score, defined as the ratio of a dealer’s

trade share in a product segment (relative to all dealers) to the sum of these trade shares across

products in a market. Like the market score, it ranges from zero to one.

Product specialization appears shaped by both market structure—centralized versus decen-

tralized—and product complexity. On centralized stock exchanges with standardized products,

dealers typically trade broadly. In contrast, specialization is stronger in the decentralized fixed-

income over-the-counter (OTC) market, where search and relationship frictions may push deal-

ers to focus on specific bond types. Yet these frictions cannot fully explain specialization: it

also arises in the centralized derivatives market, which, like stock exchanges, operates via an

anonymous limit order book, but features less standarized products.

Across markets, product specialization is more pronounce than market specialization—this

is our third fact. To derive it we introduce a specialization index that integrates market and

product specialization scores, and allows us to decompose within-market from cross-market

specialization for each dealer. For this, we adapt the Theil (1967) index to account for the fact

that not all dealers participate in every market segment. While commonly used to measure

inequality in socio-economic contexts (e.g., Anand and Segal (2015)), the Theil index has not,

to our knowledge, been applied to trade settings.

The decomposition shows that, for most dealers, product specialization within a market is

greater than market specialization. This finding suggests that, for large financial institutions,

barriers to market entry are less restrictive than factors that limit trading across products within

the same market. As a result, policies aimed at moderately changing entry costs or membership

fees—such as the recently revised fee schedules for registered broker-dealers in the U.S. and

Canada (FINRA (2024); CIRO (2024))—may have limited impact on market participation.

Next, we examine whether market and product specialization affect transaction prices, aim-

ing to establish our third, and final, stylized fact that specialized dealers trade at better prices.

We focus on relative prices across dealers, not on how specialization affects aggregate price
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levels. Dealer specialization could influence transaction prices by improving inventory man-

agement, or shaping beliefs about fundamentals. However, in a frictionless and competitive

market, any price effects from specialization would be arbitraged away.

We, therefore, begin by showing that none of the markets is sufficiently frictionless to pre-

vent some dealers to outperform others. We measure a trade’s margin as its price advantage

relative to the average price at which the same security trades on that day.2 A margin of 1% in-

dicates that the dealer pays 1% less than the daily average when buying (and sells at 1% more

when selling). We show that dealers systematically differ in the prices they obtain, across all

markets, even after controlling for trade size, security-time fixed effects, and other observables.

High-frequency traders tend to outperform others on exchanges, while retail-facing brokers un-

derperform in the bond and derivatives markets.

Having established that there is scope for price effects, we investigate whether the success-

ful dealers trade across products or markets or whether they specialize. We show that some

dealers who trade exclusively within a single market outperform those who trade across mar-

kets in the bond and derivatives market, but not the stock market. This is in line with the idea

that a decentralized market structure and product complexity promote specialization. Across

markets, dealers who consistently secure better prices for bonds do not achieve better prices in

stocks or derivatives, and vice versa, suggesting limited trading synergies across markets and

products, and reinforcing the role of specialization.3

Finally, we exploit cross-sectional variation in dealer specialization to show that more spe-

cialized dealers obtain better prices. To address concerns about reverse causality—where more

successful dealers become more specialized—and omitted variables, such as dealer sophistica-

tion or efficiency, we implement two strategies. First, we relate lagged specialization scores to

current trade margins. The idea is that last year’s specialization is less likely to be influenced

by, or directly affect, current prices. Second, we use an instrumental variables (IV) approach.

While identifying exogenous variation in trading is notoriously difficult, our data offer a unique

opportunity: we can distinguish whether a stock market trade is for the dealer’s own account or

for a client. Client orders serve as plausibly exogenous shocks for dealer own-account trades,

2Our approach follows the market microstructure literature, which commonly defines transaction
costs as the trade price relative to a benchmark (e.g., Hendershott and Madhavan (2015); Hau et al.
(2021); O’Hara and Zhou (2021); Pinter et al. (2024)). Ideally, one would compare the trade price to
a mid-price or fundamental value, but data constraints prevent this. Instead, we use the average daily
price, which we can construct consistently across markets. Our regressions control for security-week
fixed effects to account for differences across securities and over time.

3This may reflect the tendency of individual traders or desks within institutions to focus on a narrow
set of assets, optimizing trading within their domain (Lu and Wallen (2024)).
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once observable trade characteristics and a rich set of fixed effects are controlled for.

While neither approach fully eliminates endogeneity concerns, they reveal a consistent pat-

tern when taken together: more specialized dealers trade at better prices. The price effect is

moderate at the trade level but becomes economically meaningful when aggregated over time.

For example, on the stock exchange, moving from no market (product) specialization to full

specialization increases margins by 4–39 (28–41) basis points per trade.

Taken together, our findings underscore the importance of market and product special-

ization in intermediary asset pricing—two dimensions largely overlooked in existing models.

They call for asset pricing frameworks that incorporate specialization, particularly across asset

classes, and point to several promising directions for future theoretical and empirical work.

One direction for future research is to analyze whether, and if so how, specialization shapes

market-outcomes, including aggregate price levels. Doing so requires either large exogenous

variation in specialization across several dealers or a structural framework—for example, by

extending Vayanos and Vila (2021) to accommodate richer market structures and product com-

plexity. Such analysis could lay the groundwork for a broader research agenda examining

whether—and through what mechanisms—granular frictions observed in micro-level data ag-

gregate into distortions in market equilibrium outcomes. It would also complement the empir-

ical literature asset pricing literature (e.g., Pasquariello (2014); Adrian et al. (2014); Du et al.

(2018); He et al. (2017); Siriwardane et al. (2022)), which typically relies on market-level

data to capture broad effects but offers limited visibility into underlying mechanisms—aside

from a few exceptions (e.g., Siriwardane (2019); Wittwer and Allen (2023)).

In line with the goal of unpacking mechanisms, another direction for future research is

to examine why and how product complexity and market structure shape product specializa-

tion—as suggested by the contrast between product specialization on the stock market versus

the OTC market and the derivatives exchange. This would require models that account for dif-

ferent market structures and product characteristics, shifting the focus beyond a single market

or product, as seen in much of the existing literature. With few exceptions—such as Dougast

et al. (2022) and studies on derivatives and their underlying assets dating back to Kumar and

Seppi (1992)—existing models predominantly focus on a single market structure and asset

class.

Another aspect for future research would be to explore how trading interconnectedness

evolves during periods of distress. Our data shows that large banks dominate trading across

markets, which raises concerns about financial stability. From a policy perspective, this implies

that regulatory changes affecting dealer bank balance sheets—such as adjustments to the sup-

plementary leverage ratio to accommodate increased government debt issuance—will impact
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all markets. Investigating which types of institutions amplify negative spillovers and which

help mitigate them would contribute to the extensive literature on contagion, following Allen

and Gale (2000).

Finally, our cross-market and multi-asset perspective highlights the need for empirical mar-

ket microstructure studies (contributing to a large literature, including Hasbrouck and Sofianos

(1993); O’Hara (2015); Menkveld (2016); Bessembinder et al. (2020)), and the growing lit-

erature on demand estimation (following Koijen and Yogo (2019)) to move beyond isolated

markets or individual products within a market. Most existing studies in both literatures focus

on a narrow set of assets, such as a single bond type or common equity, and largely constrain

substitution across asset classes, limiting the potential for spillover effects. Allen et al. (2020),

Chaudhary et al. (2022), Üslü and Pintér (2023), Allen and Wittwer (2024), and Dix and Wit-

twer (2025) take initial steps in this direction, but given the empirical patterns documented in

this study, much remains to be explored.

Similarly, though more distantly related, the extensive asset pricing literature on factor

structures, including common stochastic discount factors, has traditionally focused on asset-

class-specific factors, but has begun shifting toward identifying joint factors that span multiple

asset classes (e.g., Sandulescu (2020); Chen et al. (2024)). Sandulescu (2020), for example,

documents significant integration between U.S. corporate bonds and equities, consistent with

the empirical patterns we observe for Canada.

2 Institutional environment

Before detailing the construction of the dataset we use to examine dealer specialization, it is

useful to review the key market features. The structure of Canadian financial markets closely

mirrors that of other developed nations, including the United States. The three primary asset

classes—bonds, stocks, and derivatives—each operate in separate markets.

Fixed-income market. Fixed-income instruments are issued in primary markets and traded

in decentralized over-the-counter (OTC) markets. In traditional OTC markets, buyers must

contact sellers individually to conduct bilateral trades. Consequently, these markets largely

depend on large financial institutions—dealers—to intermediate between investors, such as

firms, public entities, and individuals. Although not all trade occurs bilaterally today, the mar-

ket remains fragmented.

Firms seeking to become fixed-income dealers must apply to the Canadian Investment Reg-

ulatory Organization (CIRO). CIRO membership is available to Canadian entities registered to
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Table 1: Products in the fixed-income market

Product Trade share
Government Bonds and Bills 63.44
Provincial, Municipal Bonds and Bills 9.33
Bankers’ Acceptances 8.81
Bank, Agency Papers 7.96
Corporate Bonds 6.14
ABS, MBS, CMB 4.88
Strips 0.27

Notes: Table 1 shows the daily average share of total trade-volume, computed as the total amount of bonds (in
terms of par value) traded on a day, in the bond market per product. ABS are Asset-Backed Securities, MBS are
Mortgage-Backed Securities, and CMB are Canada Mortgage Bonds. Appendix Table A1 describes each product
category.

operate as dealers or advisors in any province or jurisdiction in Canada. CIRO members must

satisfy CIRO’s financial and operations compliance, business conduct compliance and regis-

tration requirements, including minimal capital requirements (typically C$250,000), and pay

annual membership fees (CIRO website).

Fixed-income securities range from long-term bonds to short-term money-market instru-

ments. We classify all securities into product categories, as explained in Appendix Table A1.

Government bills and bonds are traded the most, as shown in Table 1. Then we have provin-

cial and municipal debt, and Bankers’ Acceptance (which is a money market instrument that is

issued by a business and guaranteed by a bank), bank or agency papers (money market instru-

ments issued by banks or agencies), and corporate debt. Mortgage- or asset-backed securities

(ABS, MBS, CMB), and strip bonds (which are debt instruments in which both the principal and

regular coupon payments, that have been removed, are sold separately) are relatively small.

Equity market. Equity products are in most countries traded on centralized exchanges. Ex-

changes differ from OTC markets in that the market clears centrally on a limit order book.

In Canada there are nine exchanges.4 Our focus lies on exchanges that are owned by the

TMX group, given our data. The TMX group owns three exchanges: Toronto Stock Exchange

(TSX), TSX Venture Exchange (TSXV), and TSX Alpha Exchange (Alpha). In our sample period,

2019-2022, about 58% of the total volume traded, and 63% of the total dollar value traded in

an average month on any of the Canadian equity markets was traded on a TMX exchange.5

4The nine exchanges are: NEO Exchange Inc., Canadian Securities Exchange (CSE), Instinet Canada
Cross Limited (ICX), Liquidnet Canada Inc. (Liquidnet), Nasdaq CXC Limited (Nasdaq Canada), Trade-
logiq Markets Inc. (TMI), TMX Group (TSX, TSXV, TSX Alpha), TriAct Canada Marketplace (Match
Now).

5These numbers are computed with data from CIRO, accessible here: https://
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Table 2: Stock market products

Product Trade share
Small Stock 53.58
Large Stock 32.33
Uncommon Shares 7.41
Exchange Traded Funds 5.98
Other or Missing 0.68

Notes: Table 2 shows the daily average share of total trade-volume on the stock market, computed as the total
amount of stocks (i.e., the total number of shares) traded on a day, per product. Appendix Table A2 describes
each product category.

Only exchange members can place orders for their own account, or on behalf of non-

exchange members, i.e., their clients. To become a TMX exchange member, a firm must be

a member of a self-regulatory organization (CIRO in Canada), have a CDS clearing agreement,

and establish electronic access to TSX and/or TSX Venture Trading Engine.6 In addition, a

firm must pay an entry cost, which is relatively high for members who seek to be eligible to

trade, roughly C$65,000. To keep the membership status, each exchange member must pay

a monthly membership fee (in 2023 $1,500), in addition to trading fees, which are explained

on TMX’s website.

Exchange members can trade a variety of products, ranging from common stocks, and ETFs

to more specialized products, such Exchange Traded Receipts (which let investors own gold

bullion stored in the Royal Canadian Mint Gold Reserves). We group products in five categories,

as explained in Appendix Table A2: large and small common company stocks, ETFs, non-

common shares, and other/missing.

Derivatives market. Derivatives are traded over-the-counter, or on exchanges. We focus on

exchange-traded derivatives. In Canada, there is a single derivative exchange, the Montreal

Exchange (MX). It is owned by TMX group, and operates similarly to the other TMX exchanges.

To trade on the MX, a firm must become an MX exchange member. The requirements are

similar to those for TMX. In particular, each MX member must be a CIRO member if the firm

is Canadian and a member of the analogue regulatory entity of their nationality otherwise.7

www.iiroc.ca/sections/markets/reports-statistics-and-other-information/
reports-market-share-marketplace, accessed on 08/10/2023.

6If the firm does not have a CDS clearing agreement, it must have a relationship with a clearing
facilitator. For more details, see TMX’s website.

7More specifically, requirements are different for Canadian and foreign firms. Canadian firms must
be member of a Canadian self-regulatory organization (Investment Industry Regulatory Organization
of Canada); must be a member of the Canadian Derivatives Clearing Corporation or conclude a clearing
agreement with one of its members (MX). Foreign firms must be located in one of the following juris-
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Table 3: Derivative products

Product Trade share
Treasury Futures 37.44
Equity Options and Share Futures 27.77
Short Rate Derivatives 20.75
Bundles and Spreads 7.85
Index Options and Futures 6.51
Currency Options 0.04

Notes: Table 3 shows the daily average share of total trade-volume on the derivatives market, computed as the
total amount of derivative contracts traded on a day, per product. Note that the amount of contracts does not
reflect the value of the underlying assets. Appendix Table A3 describes each product category.

Members also have to pay MX-specific monthly membership fees and trading fees.

We group the derivative products into categories, closely following the MX website, as

explain in Appendix Table A3. The largest category in terms of trade volume are Treasury

futures, followed by equity options and share futures, and short rate derivatives (as shown

Table 3). Trading activity in currency options is negligible.

Some derivative products, like Treasury futures or index futures, are highly standardized,

while others are more complex. One example are ‘user-defined-strategies’ (UDS), which allow

participants to create customized option strategies based on their individual risk management

needs. We classify them under bundles and spreads since UDS tend to combine multiple deriva-

tive contracts. Even equity options and share futures are more complex than common stocks,

because traders can specify the maturity and strike price, in addition to the underlying asset.

3 Data

We combine different data sources on five market segments, TSX, TSXV, Alpha, MX and the

fixed-income market. These five market segments represent three markets: stock market (TSX,

TSXV, Alpha), derivatives market, and the fixed-income market. The main data sources that

allow us to observe trade information are proprietary to the TMX group and CIRO. We hand-

collect publicly available information on CIRO and exchange members, financial products, and

market conditions to enrich the data.
diction: United States, United Kingdom, Republic of Ireland, Israel, Jersey, the Netherlands and France;
must be duly formed pursuant to the relevant laws of the country; must be registered with a securities
or derivative instruments regulator, or a recognized self-regulatory organization, unless it is exempted
from such registration in its jurisdiction and subject to all other applicable restriction; must have en-
tered into a clearing agreement with a member of the Canadian Derivatives Clearing Corporation; must
have a designated agent for service of process residing in Quebec (MX).
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Fixed-income market. Our main data source for the fixed-income market is the Debt Se-

curities Transaction Reporting System, MTRS2.0. This data base stores trades that involve at

least one CIRO Member (who have an obligation to report all of their trades) since November

2015.8 Our sample covers trades with all Canadian fixed-income products from 2019 until

2022. Trades between two institutions or individuals who are not CIRO Members are not

reported. According to market experts, however, these trades are rare.

For each transaction we see which security is traded, and a series of security-characteristics

which allows us to classify securities into product categories and assign industry sectors. We

also observe the quantity and price of the trade, the time at which the trade is reported, and

the side of the trade (buy/sell).

A rare feature of the MTRS2.0 data relative to most of the existing datasets that cover OTC

markets is that most firms carry a unique identifier. In this study, we focus on CIRO dealers.

Traders who act as dealers in the primary market have to report their own trades with their legal

identifiers (LEIs). Other CIRO dealers are allowed (but not obligated) to mask their identity

when they are reporting their own trades, but not when they are reported as counterparty

(with LEIs). Given that most trades occur with at least one party acting as a primary dealer,

masked identifiers are infrequent—roughly 5% of trades and 1% of trade volume.9 Since we

are interested in how much dealers buy and sell, we stack buy- and sell-side trades, and remove

sales or purchases by non-dealers.

Equity and derivatives market. We observe trade-level data for all exchanges that are owned

by the TMX group between 2019 and 2022. For each trade, we observe the time of the trade (up

to milliseconds), the security (i.e., the TMX symbol), the amount, the price, and trading-firm

IDs. For equities, we also see the best national bid and ask offer for each symbol that was valid

right before each trade executes. Moreover, we know whether the trade is for the exchange

member’s own account or a client account. More specifically, for stock market trades, we

can distinguish between an inventory account (IN), a client account (CL), and an account that

members who are designated market makers use for their market making active (ST). Although

there are a few other types of accounts, these are negligible. For trades in the derivatives

8A small group of Bank of Canada staff have access to the raw data, and this is anonymized before
it can be shared, subject to a non-disclosure agreement, to external researchers.

9Whenever a masked dealer trades with a primary dealers or government distributor, it is possible
to back out the identify of the masked dealer by relying on the fact that both dealers need to report the
trade. The remaining trades by masked dealers are those between two masked dealers. In these cases,
we cannot rule out the possibility that our data sample includes both sides of the trade due to double
reporting. In all other cases, Bank of Canada staff has carefully removed one of the trade sides, so that
each trade appears only once in our data set.
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market, we observe analogous account-types.

To account for both sides of each transaction, we stack buy- and sell-side trades. More-

over, in order to link dealers across markets, we link the market-specific trading-IDs to each

company’s LEI. We achieve this by downloading exchange member lists containing trading

IDs and company names for all instances where the TMX website was archived by the Way-

back Machine during our sample period. We then identify each company’s LEI using https:
//www.lei-lookup.com. Doing so, we account for mergers, acquisitions, and name changes

over time.

Lastly, to categorize securities into products, we merge the data on stock market trades with

publicly available listing information for each listed symbol in December of each year in our

sample, relying on the wayback machine. Finally, to validate data quality, we verify that we

observe the same daily trade volume and nominal value as CIRO and the MX exchange report

publicly for the stock markets and the derivatives exchange. See Appendix A for details.

Dealers. A distinctive feature of our data is the ability to track firms registered as CIRO dealer

members in the fixed-income market or as exchange members across these markets. Through-

out the paper, we refer to these traders as ‘dealers.’ It is important to note that we do not

classify firms as ‘dealers’ based on their trading or market-making activities. Instead, our def-

inition relies solely on firms’ membership status, which grants them the ability to place trade

orders on their own behalf on exchanges and to trade with clients in OTC markets, regardless

of their specific role in the market. We adopt this definition because it is more exogenous—at

least conditional on market entry—than classifications based on endogenous trading behavior.

For each dealer LEI, we identify the LEI of its holding company parent using information

from gleif.org. Doing so, we manually track mergers, acquisitions, and name changes found

through Google searches to the best of our ability.

Further, we classify all LEIs and their parents into institution types: Table 4 shows that

brokers constitute the largest category at the parent level, representing financial entities pri-

marily engaged in brokerage services. Following them are asset managers and high-frequency

traders, which include hedge funds, proprietary trading firms, and private equity firms. Invest-

ment banks come next, followed by other, typically smaller, banks and credit unions. At the LEI

level, the dataset also includes some mutual funds and retail branches of larger institutions,

such as banks, that focus on retail investing.

Summary statistics. Appendix Table A5 summarizes our trade data for stocks (TSX, TSXV,

Alpha), bonds (MTRS), and derivatives (MX) to provide an overview of a typical trading day

and trade in each market. The bond market is the largest in terms of trade volume. The number

10

https://www.lei-lookup.com
https://www.lei-lookup.com
https://www.gleif.org/en


Table 4: Dealer types

Institution type # of LEIs # of Parents
Asset Manager 15 21
Bank 7 17
Investment Bank 12 15
Broker 115 65
High-Frequency Trader 17 21
Mutual Fund 8 0
Pension Fund and Insurance 4 3
Retail 13 3
Other 3 2

Notes: Table 4 shows the number of LEIs and parent-LEIs of each dealer type at the LEI and parent-level. For
the type classification we follow the methodology of the Bank of Canada used to classify institutions into types
for the MTRS 2.0 data (explained in Appendix A). Appendix Table A4 defines each type category we observe in
our data.

of dealers who actively trades on an average day is similar across markets, ranging from 48 in

the derivatives market to 60 in the stock market.10 For derivatives, trade size and volume reflect

the number of contracts, not the underlying asset value. Similarly, the trade price reflects the

price payed to exchange the derivative, i.e., the option fee in case the contract is an option,

not the strike price.

4 Dealer specialization

We examine two types of specialization: market specialization, which may arise from differ-

ences in market-clearing rules and entry costs, and product specialization within a market,

which could stem from variations in trading expertise or client relationships.

To preview, we will establish our first stylized fact in what follows:

Fact 1 (Specialization). Dealer trading is uneven both across markets and across products within

a market—dealers specialize.

To quantify specialization, we assign each dealer to their holding company. This uniformly

removes any type of in-house segmentation for all dealers, which we know to play a role (as

shown by Siriwardane (2019), and Lu and Wallen (2024), among others). As a result, our

specialization measures are conservative and likely underestimates

10When the level of aggregation for institutions changes, the set of players adjusts slightly. This occurs
because an entity identified by its LEI may not be classified as a dealer, whereas its parent institution
might be.
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Additionally, we distinguish between markets rather than market segments, treating TSX,

TSXV, and Alpha as a single market. These exchanges are highly integrated, likely due to

common ownership and structural similarities. Nearly all trade volume is executed by dealers

active across all three exchanges (see Appendix Table A6).

Market specialization. Market specialization might arise because of different market struc-

tures. Bonds trade in a decentralized market that is not directly connected to stock markets,

or the derivatives exchange. Moreover, each market is characterized by different entry costs.

Supporting the idea that frictions, or market-specific preferences, might hinder universal

market participation, Figure 1a highlights that not all parent LEIs (the y-axis) participate in all

markets (the x-axis). If a dealer trades at least once in a given market, we plot a black line for

that market, otherwise, the line is white. Thus, if all dealers participated in every market, the

graph would be entirely black. Instead, the presence of both black and white indicates that

dealers do not participate in all markets.

Market activity, measured in trade volume, is also uneven across markets. This is evident

for the 20 largest dealers in Figure 1b. If dealers maintained similar market shares—defined as

their fraction of total trade volume in each market—the horizontal bars would have consistent

color shading, with lighter shades indicating larger market shares.

Including all dealers, Figure 2 visualizes the pairwise correlation of market shares across

markets.11 We see that most dealers concentrate their trading in specific markets; if market

shares were uniform across markets, the points would align along the 45-degree line. Further-

more, smaller dealers tend to specialize more strongly, as indicated by points near the axes,

suggesting they transact almost exclusively in one market. Among larger dealers, a subset

focuses more heavily on the bond market, primarily banks that act as primary dealers (see

Appendix Figure A1a).

To control for the overall market size of a dealer, we introduce a market specialization score,

which ranges between 0 (the dealer does not trade in the market under consideration) and 1

(the dealer only trades in the market). Formally, the score divides dealer j’s market share in

market m and year y , sy jm, by the sum of the dealer’s market shares in all markets:

specializationy jm =
sy jm
∑

m sy jm
∈ [0, 1]. (1)

Figure 3 shows the market specialization scores for all dealers, averaged over the years. Many

11Appendix Figures A2 and A3 show similar correlation patterns when considering dealers at the
LEI-level, and when excluding trades for client accounts.
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Figure 1: Dealer presence and market shares per market

(a) Dealer presence

(b) Market shares

Notes: Figure 1a shows dealer presence in each market—bonds (MTRS), stocks (TSX), and derivatives
(MX)—with black indicating that a dealer has traded at least once in the respective market. Figure 1b displays
the average annual market shares of the 20 dealers with the highest average annual trade volume in any market.
In both figures, each row represents a dealer, sorted by total trade volume across all markets. Dealers with the
highest overall trade volume appear at the bottom, while those with the lowest appear at the top. Since the
fixed-income market is the largest by trade volume, this sorting places dealers with relatively low participation in
fixed income—but significant presence in other markets—toward the top.

dealers do not trade in all markets—their scores align along the x-or y-axes and on the diagonal

that connects the 1 on the x-axis with the 1 on the y-axis. Some only trade in one market and

therefore have a specialization score of 1.

Among the three markets, the derivatives market stands out as the most detached, with

some dealers—particularly high-frequency traders—engaging almost exclusively in derivatives,

even when their overall trading volume exceeds 5% (see Appendix Figure A1b). In total, ap-

proximately 35% of MX’s trade volume is attributed to high-frequency traders when including

client trades, rising to 72% when excluding them, as shown in Appendix Table A7. Around

25% of traders operate exclusively on MX, even at the parent-company level. This is largely

driven by hedge funds, proprietary trading firms, and private equity firms that specialize in MX

trading.

Banks acting as primary dealers are the most active dealers in linking markets (see Ap-

pendix Figures A4 and A5). In the bond market, nearly all dealers trading across all markets

are primary dealers. On the stock market, primary dealers active in all markets account for

approximately 68% of total trade volume. In the derivatives market, their share is lower at

around 40%, yet no other dealer type plays a larger role in connecting derivatives with the

other two markets. This underscores the significance of primary dealers beyond fixed income

and highlights potential contagion risks during financial distress.

13



Figure 2: Dealer market shares, sy jm ∈ [0, 1], in an average year

(a) All dealers (b) Largest dealers

Notes: Figure 2a plots all dealer j’s market shares, sy jm ∈ [0,1], for each market m, averaged across years.
The stars show each dealer’s stock market share on the y-axis and their derivatives market share on the x-axis;
the circles show the stock market shares versus bond market shares, and the crosses the bond versus derivative
market shares, on the y-axis and x-axis respectively. Figure 2b zooms in on dealers who trade at least 5% of the
market share in one of the three markets.

Figure 3: Market specialization

(a) All dealers (b) Largest dealers

Notes: Figure 3a plots all dealer j’s market specialization scores, specializationy jm = sy jm/
∑

m sy jm ∈ [0, 1], for
each market m, averaged across years. The stars show each dealer’s stock market score on the y-axis and their
derivatives market score on the x-axis; the circles show the stock versus bond market shares, and the crosses the
bond versus derivative market score, on the y-axis and x-axis respectively. Figure zooms in on dealers who trade
at least 5% of the market share in one of the three markets.

14



Product specialization. Product specialization may be driven by various factors, including

differences in trading expertise, more effective inventory management, or relationships to

clients with preferred habitat. On exchanges, some specialization also arises mechanically:

firms designated as market makers are assigned subsets of securities and are obligated to trade

them, leading to rule-based specialization. However, we show that this mechanical effect does

not drive our results. When we exclude trades for market-making accounts (which designated

market makers have to use when they are trading in their capacity as market maker), the main

findings remain unchanged (see, for example, Appendix Figure 4 compared to Figure 4, which

we explain below).

We assess the degree of product specialization within each market analogously to our as-

sessment of market specialization.12 First, Figure 4—analogous to Figure 1—visualizes dealer

participation and product market shares—the fraction of a product’s trade volume handled by

each dealer—among the largest dealers across products. Comparing across markets, product

specialization is lowest in the stock market. Not only do all dealers trade all products (as we see

from the black box on the RHS of Figure 4a), dealers also distribute their trading more evenly

across products. In the stock market colors on the LHS of Figure 4a are more consistent within

dealers (horizontally) than across dealers (vertically), indicating a more even distribution of

market shares, than in the bond and derivatives market.

Second, Figure 5—the analogue of Figure 3—presents the pairwise correlation of product

specialization scores for a subset of products, which we define analogously to market special-

ization scores (1),

specializationy jmp =
sy jmp
∑

p sy jmp
∈ [0,1], (2)

where sy jmp represents the fraction of dealer j’s trade volume in product p within market m,

relative to all other dealers. Since each market contains more than three products, the fig-

ure is less intuitive than, and not directly comparable to, Figure 3a. However, as with market

specialization, dealers with scores near the x- or y-axis—or at the extreme value of 1 which

means that the dealer only trades one product—demonstrate higher degrees of product spe-

cialization. Comparing across markets, we note that product specialization scores in the stock

market (blue crosses) tend to be more moderate, whereas scores in the bond and derivatives

markets are more frequently close to 1 or 0, reflecting stronger specialization.

Our interpretation of these empirical patterns is that product specialization is influenced

12In Appendix Figure A6 we further analyze the proportion of securities each dealer trades relative
to the total number of securities in each market. For all dealers, this fraction is highest on the stock
market, followed by the derivatives market, and then by the bond market.
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Figure 4: Dealer presence and market shares across products in each market

(a) Stock market

(b) Bond market

(c) Derivatives market

Notes: Figure 4 is similar to Figure 1 but replaces markets with products within each market, the stock market
(a), bond market (b), and derivatives market (b), where we exclude currency options because they are so small.
On the RHS we show whether dealers trade each product at least once in black. On the LHS we see the average
annual product market shares of the largest dealers (on the LHS) for each market. In all figures, each row
represents a dealer, sorted by total trade volume in the respective market. Dealers with the highest overall trade
volume appear at the bottom, while those with the lowest appear at the top.
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Figure 5: Product specialization

(a) Bond and stock market (b) Stock and derivatives market

Notes: Figure 5 plots all dealer j’s product specialization scores, specializationy jmp = sy jmp/
∑

p sy jmp ∈ [0,1],
for a subset of products p for each market m, averaged across years. In 5a we compare bonds versus stocks and
in 5b we stocks versus derivatives. The crosses show the specialization scores for large stocks on the y-axis and
ETFs on the x-axis. The stars in 5a show the scores for government bonds on the y-axis and for corporate bonds
on the x-axis; they show the scores for Treasury futures versus equity options and share futures in 5b.

by both market structure—OTC versus exchange—and product complexity. On the centralized

stock exchange, where products are largely standardized, specialization is minimal.13 In con-

trast, it is more pronounced in the decentralized bond market and the derivatives exchange,

which includes both standardized and complex products.

One reason for decentralized markets to feature higher product specialization is that trading

is more strongly dictated by the network structure among dealers and clients. We know from

existing studies that dealers form long lasting relationships with clients, and that clients tend to

have tastes for specific bonds (Di Maggio et al. (2017); Hendershott et al. (2020); Jurkatis et al.

(2023); Allen and Wittwer (2024)). This could attribute to stronger product specialization in

OTC markets compared to stock markets where network structures and relationships are less

relevant.

Yet, search frictions and relationships in OTC markets alone cannot explain product spe-

cialization; otherwise, we would not observe specialization on the derivative exchange, which

operates similarly to stock exchanges. Unlike stock exchanges, the derivatives exchange ac-

commodates both standardized products, like Treasury futures, and more complex derivative

contracts. Standardized products are likely to attract a broader set of dealers, similar to the uni-

versal dealer presence in stock markets, as they require minimal customization—dealers simply

13To further support our idea, we examine different types of uncommon shares (such as preferred
shares and debentures). We find that more complex products are not traded by all dealers (see Appendix
Figure A7 and Appendix Table A8 for the complete list of suffices).
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select from a predefined menu. Consistent with this, many more dealers trade Treasury futures,

short-rate derivatives, and index futures—the most standardized derivatives—compared to op-

tions or share futures, despite the latter accounting for around 28% of total average daily trade

volume. However, this pattern does not hold universally. Many dealers trade bundles and

spreads, which are more complex, suggesting that product complexity alone does not deter-

mine specialization.

Comparing market and product specialization. Dealer specialization by market and prod-

uct aligns with the growing literature on segmentation in financial markets and confirms our

prior. However, it is less clear which type of specialization is more pronounced. This distinc-

tion matters for both policy and modeling, as it highlights the more relevant dimension of

segmentation. We will now gather evidence to establish our second main fact:

Fact 2 (Market versus product specialization). Across-product specialization within a market is

for most dealers larger than across-market specialization.

To compare cross-market and cross-product specialization, we introduce a specialization

index—based on Theil (1967)’s index—, which integrates the specialization scores from Fig-

ures 3 and 5 in a way that allows for direct comparison. The standard Theil T-Index, T j,

captures the distribution of dealer j’s market share across product-market segments. If the

dealer trades the same fraction of total volume in each segment, T j = 0. A positive T j in-

dicates specialization, with higher values reflecting greater variation in the dealer’s activity

across segments.

For our purposes, the original index is not suitable because it fails to account for the fact

that non-participation by dealers in a market or market-segment increases specialization. To

address this, we introduce a non-participation cost, ξ, which applies when a dealer does not

trade in a market segment. Since this punishment term is chosen arbitrarily, the magnitude

of our index by itself is not informative. However, it is valuable for comparing specialization

within a market across products to specialization across different markets, which is our primary

objective. To see this, note that the index decomposes into two components: one measuring

within-market specialization, T w
j , and another measuring across-market specialization, T a

j :

T j = T a
j + T w

j , with T w
j =

1
M

∑

m

T w
jm.

T w
jm measures the how dealer j’s market share in a market-product segment is distributed across

products in market m, with more uneven distributions meaning higher specialization; and T a
j
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Table 5: Specialization decomposition

Across-market (T a
j ) Across-product (T w

j )
Dealers who participate in all markets 0.02–1.10 0.09–5.22
Dealers who participate in two markets 2.09–2.77 1.87–5.87

Conditional on being active in only two markets 0.42-1.10 0.20–3.96
Dealer who participate in one market − 3.48–6.71

Conditional on being active in only one market − 0.15–1.95

Notes: Table 5 reports the range of across-market specialization indices (T a
j ) and within-market, cross-product

specialization indices (T w
j ) for a punishment term of ξ = 5. Dealers are grouped by activity in all markets, two

markets, or one market. For dealers who are active in K ∈ {1, 2} markets, ξ increases both indices by (3−K)/3ξ.
Indices are computed with and without accounting for non-participation penalties. For single-market dealers,
only cross-product indices are calculated, since the cross-market index is uninformative.

measures how the average of product market shares in each market are distributed across

markets. Consult Appendix B for mathematical details.

Table 5 provides the range of indices across dealers for three dealer groups, those active

in all markets, those active in two out of three markets, and those active in only one market;

Appendix Figure A11a shows all indices for each dealer separately. For dealers who are not

active in all markets, we compute both indices subject to punishment for non-participation

in the market they are not active in. In addition, we also compute the indices conditioning

on market participation to compare cross-product specialization within a market across these

dealer groups.

For most dealers, within-market specialization is larger than across-market specialization,

implying larger cross-product specialization compared to cross-market specialization. Notably,

this is not driven by the fact that there are more products in a market than entire markets,

like it would when considering other measures, such as the variance. Instead, the difference

is driven by unequal participation across submarkets.14

Greater product than market specialization suggests that, for large financial institutions,

barriers to market entry are less restrictive than factors that limit arbitrage across products

14The magnitudes of the indices depend on the punishment ξ-term. However, the conclusion that
within-market specialization is larger than across market specialization does not depend on the choice
of ξ. To show this, we shut off non-participation punishments by setting ξ to zero. In that case, the
average (median) within product index (across all dealers) is 0.83 (0.73), and the average across-
product index is 0.91 (1.10). The indices are relatively similar in size, but this is driven by dealers who
only participate in one market. For those dealers both indices are identical. When restricting attention
to dealers who participate in at least two markets (for which the within-market and across market
measures differ), the average (median) within product index (across all dealers) is 0.53 (0.45), which
is significantly smaller than the average across-product index is 0.75 (0.83).
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within a given market. Given that product specialization appears to depend on whether a mar-

ket is centralized (e.g., exchanges) or decentralized (e.g., OTC markets) and on the complexity

of the products traded, our findings underscore the need for theories that account for different

market structures or different degrees product complexities, unlike most existing models that

focus on a single market structure with standardized assets. While our analysis does not assess

whether trading specialization improves welfare, it highlights the role of market design and

product complexity in shaping market fragmentation.

5 Dealer specialization and transaction prices

Thus far, our analysis has focused on market shares—that is, quantities. The second part of

the paper turns to prices. We ask whether market and product specialization affect transaction

prices. This could occur if specialization improves inventory management, shifts beliefs about

fundamentals, or allows some dealers to extract better prices in the presence of limited compe-

tition. We focus on price differences relative to market averages, leaving effects on aggregate

equilibrium price levels for future research. Concretely, the remaining of our paper serves to

establish our third stylized fact:

Fact 3 (Specialization and prices). Dealers who are specialized trade at better prices relative to

average market prices.

To detect systematic differences in trade prices, we consider dealers at the LEI-level, but

our findings are robust if we consider the dealers’ parents instead. To reduce the sample size

for our data from the exchanges, which is very large, we collapse the exchange data from the

exchanges to the level of market segment (TSX/Alpha/TSXV/MX), day, security, dealer, trade

direction (buy/sell), and trade type (active/passive). With slight abuse of terminology, we

refer to each row in the collapsed dataset as a ’transaction’ τ, and compute the total quantity

traded, quantityτ, and the average price, priceτ, for each τ.

Measuring price advantages. To detect systematic price differences across both sides of the

trade and ensure comparability across securities with varying price levels, we follow the market

microstructure literature and compare transaction prices relative to benchmark prices. Ideally,

trading prices would be compared to fundamental values, but since these are rarely observable,

equity studies use the prevailing mid-price, while bond market studies rely on inter-dealer

prices, among other alternatives.

We seek a benchmark that is consistently available across markets and use each security’s

average daily price, which means our measure incorporates intra-day volatility. To account for
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variation across securities and over time, all regressions include security-week fixed effects.

Moreover, to ensure the average price is meaningful, we focus on sufficiently liquid securities

traded at least three times in a day, with results remaining qualitative robust when restricting

to more liquid securities (e.g., those traded at least five times daily).15 We also exclude approx-

imately 2% of derivatives transactions executed at negative prices—common in certain spread

types—as these would complicate the interpretation of our findings.

With these data, we want to measure the relative price advantage compared to the market.

The easiest approach would be to consider the percentage difference of a transaction τ for

security s relative to the average price for that security on that day t:

Marginτ =
average pricets − trade priceτ

average pricets
× 100× trade signτ

Trade sign is one when the trader buys and -1 when they sell. A 1% margin says that the

trade price is 1% below the securities’ daily avg. price when buying, and above when selling.

However, since there are occasional outliers—which is common for trade-level data—we follow

Hendershott and Madhavan (2015)’s measure, which is identical to Marginτ for prices that are

sufficiently close to the average price, and trims outliers:16

marginτ = − ln(trade priceτ/average pricets)× 100× trade signτ ≈Marginτ. (3)

Margins vary significantly more in the derivatives market, where price volatility within a day

is highest, followed by the stock market, and finally the bond market, where price volatility is

more moderate (see Appendix Figures A13–A16). Due to differences in trade sizes and prices

across markets, a 1% margin difference results in different total payment magnitudes for the

median trade: approximately C$160 in the stock market, C$12,500 in the bond market, and

10 cents in the derivatives market.

Sufficient condition for price effects. Before analyzing how specialization affects transac-

tion prices, we first verify that no market is frictionless enough to prevent some dealers to

systematically outperform others. In fully frictionless markets, such differences would be ar-

15This restriction is particularly stringent in the derivatives market, as symbols often include detailed
and flexibly specified contract information. Our restricted dataset covers over 99% of stock market
trades, approximately 88% of bond market trades, and about 54% of derivatives trades.

16Appendix Figure A12 shows the relationship between our main margin measure (3) and its linear
approximation. Relative to the linear percentage difference, the log-measure attenuates the poor trades
(which, for buyers, are those executed at higher than average prices), and amplifies the successful
trades.
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bitraged away, and specialization would not impact prices—even if it influenced underlying

inventory costs or beliefs.

We regress our margin measure on dealer-indicator variables separately for each market:

marginτ = α+
∑

j

β jI(dealer= j) + γcontrolτ + ζt + ζws + ετ. (4)

If there is no systematic difference of dealers across markets, all dealer coefficients should be

statistically insignificant from zero. We include a day fixed effects, ζt , to absorb time-varying

shocks that affect the entire market, and year-week-security fixed effects, ζws, to account for

the average weekly margin of a given security.17 This addresses two potential biases. The

first arises because different dealers trade different securities, which naturally have varying

margins; the second comes from the feature that the set of traded securities varies over time.

Additionally, we include control variables, though they do not significantly affect the over-

all pattern of the dealer coefficients. First, given prior evidence that trade size influences out-

comes, we control for trade size. Second, for exchange trades, we account for the account type

associated with the trade. For bond trades, we distinguish the trade type—whether it occurs

between dealers (i.e., CIRO dealer members), between a dealer and an inter-dealer broker, or

between a dealer and a non-dealer. Across markets, we use the same large primary dealer as

the baseline for consistency.

In this and all other margin regressions, we cluster standard errors at the daily level to ac-

count for arbitrary intra-day correlations across dealers, securities, and trades. This is crucial

when traders split orders throughout the day or react to price shocks that impact multiple se-

curities.18 Because some days feature many more trades trade than others, the day-clusters are

highly uneven in size. This can result in conventionally computed standard errors being un-

derestimated (MacKinnon et al. (2023)). One common solution is to compute standard errors

via wild (WCR) bootstrapping following Cameron et al. (2008), and Roodman et al. (2019).

Unlike standard methods, this approach does not rely on asymptotic approximations to the

17We do not include day-security symbol fixed effects because some symbols are not traded frequently
enough throughout the day. However, for robustness, we have estimated all regressions with symbol-
day fixed effects, and our main conclusions remain unchanged.

18An alternative approach is to cluster by dealers, accounting for correlations in a dealer’s trades
across days while ignoring intra-day correlations across dealers. However, with fewer than 100 dealers
in the stock and derivatives markets and uneven cluster sizes, we are not confident this would yield
reliable standard errors, even when boostrapping standard errors (MacKinnon et al. (2023)). Another
option is to cluster at the symbol level to capture correlated shocks affecting the same symbol over time.
We do not adopt this approach because many price shocks are likely correlated across symbols, making
symbol-level clustering insufficient for addressing cross-symbol dependencies.
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test statistic’s distribution, which can be inaccurate when clusters are uneven or few in num-

ber. Instead, it constructs confidence intervals using bootstrap resampling, and therefore yields

more reliable test statistics when clusters are small or uneven. To ensure robustness, we report

coefficients that are statistically significant under both wild-bootstrapped and conventionally

computed standard errors.

Our findings (Figure 6 and Appendix Figure A19) show that some dealers consistently se-

cure better prices across all markets, both at the LEI- and parent-level. In the stock market,

the best dealer (a large broker) achieves margins 0.64% better than the baseline (a primary

dealer), while the worst (a smaller broker) lags by 0.31%, translating into an annual bene-

fit of approximately C$266 million for the best dealer and a C$6 million loss for the worst.19

Dealer differences are more pronounced in the derivative market due to price volatility, with

the best (a large hedge fund) outperforming by 1.38% and the worst (a proprietary trading

firm) underperforming by 1.30%, though total payment differences remain modest given con-

tract prices and trade volumes. In the bond market, most dealers earn lower margins than the

dominant primary dealer baseline, yet the best (a large insurance company) outperforms by

0.08%, gaining C$17 million annually, while the worst (serving retail clients) underperforms

by 0.48%, losing C$278 thousand.

Table 6 examines which dealer types achieve better margins using cross-dealer variation

by estimating regression (4) with dealer-type indicators, setting asset managers as the base-

line.20 High-frequency traders outperform other types in derivatives and perform well in stocks,

though mutual funds dominate. Pension funds and insurance companies, the weakest perform-

ers in stocks, achieve the highest bond margins. Dealers specializing in retail clients earn the

lowest margins in bonds and derivatives but perform comparably to asset managers in stocks.

Specialization affects prices. Having established that no market is sufficiently frictionless

to eliminate systematic price differences, we next ask whether and how specialization affects

transaction prices. In theory, the relationship between dealer specialization and prices is am-

biguous. Greater specialization might enable dealers to trade at lower prices. However, it could

also be that specialized dealers are more efficient than their less specialized counterparts and,

19To translate margin percentages into annual monetary losses or gains, we assume that each trade
is executed at the median price, using the total amount (e.g., number of shares in the stock market)
that the dealer under consideration trades in an average year.

20Consistent with prior studies (Bernhardt et al. (2005)), larger trades receive worse prices on ex-
changes, and execution prices are worse for client trades than for inventory or market-making accounts.
In the bond market, we find no trade-size discounts, aligning with mixed literature (Pinter et al. (2024);
Allen and Wittwer (2024)). Dealers earn higher margins trading with clients than with other dealers
or brokers.
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Table 6: Margin regression with dealer-types (bonds, stocks, derivatives)

Bond market Margin

Trade size +0.000
(0.000)
[0.000]

Counterparty is broker +0.008**
(0.003)
[0.002]

Counterparty is client +0.018***
(0.002)
[0.002]

Bank 0.021*
(0.010)
[0.004]

Broker +0.003
(0.007)
[0.002]

High-Frequency Trader 0.027
(0.032)
[0.028]

Investment Bank −0.049**
(0.015)
[0.011]

Mutual Fund −0.013
(0.008)
[0.004]

Pension Fund and Insurance +0.101***
(0.008)
[0.003]

Retail −0.160***
(0.009)
[0.003]

X
X
X

Date-& symbol-year-week fes Yes

N 6,757,118
R2 0.017
Within-R2 0.000

Stock market Margin

Trade size −0.162***
(0.006)
[0.006]

Client account −0.069***
(0.003)
[0.001]

Inventory account −0.000
(0.003)
[0.002]

Market-maker account +0.070***
(0.003)
[0.002]

Bank +0.071***
(0.002)
[0.002]

Broker +0.045***
(0.001)
[0.001]

High-Frequency Trader +0.115***
(0.004)
[0.004]

Investment Bank +0.009***
(0.002)
[0.002]

Mutual Fund +0.159***
(0.019)
[0.019]

Pension Fund and Insurance −0.046***
(0.003)
[0.003]

Retail +0.026***
(0.002)
[0.002]

Date-& symbol-year-week fes Yes

N 111,051,211
R2 0.008
Within-R2 0.001

Derivative market Margin

Trade size −24.255***
(2.249)
[1.909]

Client account −0.275***
(0.066)
[0.028]

Inventory account +1.332***
(0.072)
[0.030]

Bank −0.304**
(0.097)
[0.078]

Broker +0.388***
(0.034)
[0.026]

High-Frequency Trader +1.001***
(0.041)
[0.031]

Investment Bank +0.597***
(0.043)
[0.036]

Other +0.404
(0.275)
[0.261]

Retail −0.394***
(0.067)
[0.051]

X
X X
X X
X X
X X
X X

Date-& symbol-year-week fes Yes

N 4,529,584
R2 0.036
Within-R2 0.006

Notes: Table 6 shows the estimation results from regressing margins (3) of stock market trades on trade-size, the
account-type (client, inventory, market-market, or other—the baseline), dealer-types, and day- and security-year-
week fixed effects on the LHS, for fixed-income trades in the middle, and for derivatives on the RHS. For bonds,
we replace the account-type with the type of trade (dealer-broker, dealer-client, dealer-dealer—the baseline).
Asset managers are the baseline. Margins are in percentage points, and quantities are in million C$. We cluster
standard errors at the daily-level and report conventionally computed robust clustered standard errors in round
brackets, and wild-bootstrapped standard errors in squared brackets. The stars reflect to the larger standard
errors.
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Figure 6: Dealer coefficients that are statistically different from zero at 5% significance level

(a) Stocks (b) Bonds (c) Derivatives

Notes: Figure 6a shows the dealer coefficients, and 95% wild-bootstrapped confidence intervals (clustered at
the daily-level), when regressing margins (3) of a stock market trade on dealer indicator variables and control
variables (trade-size, the account-type, security-week-year and day fixed effects). Figures 6b and 6c show the
analogue for the bond and derivatives market, respectively. For the bond market, we replace the account-type
with a variable that indicates the type of trade (dealer-dealer, dealer-client, dealer-broker). In all graphs we
exclude dealer coefficients that are not significantly different from zero at a significance level of 5% according
bootstrapped and conventional inference to be conservative. Since we sort coefficients from small to large, the x-
axis are not comparable across markets, as they do not reflect dealer identifiers. Appendix Figures A18 shows the
analogous figures with conventionally computed confidence intervals; Appendix Figures A19 aggregates dealers
to the parent-level.

Figure 7: Cross-market correlation between dealer coefficients of dealers active in all markets

(a) Bonds-stocks (b) Bonds-derivatives (c) Stocks-derivatives

Notes: Figure 7a shows the within-dealer correlation of coefficients in the bond (y-axis) versus stock market (x-
axis), 7b and 7c show the correlation for the other two market pairs. We exclude dealer coefficients that are not
significantly different from zero at a significance level of 5% according to bootstrapped and conventional inference
to be conservative. Appendix Figure A21 shows the cross-market correlation between dealer coefficients when
aggregating dealers to the parent-level.
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as a result, are willing to trade at prices that less specialized dealers avoid. To find out we use

two complementary strategies: examining dealers individually and analyzing patterns in the

cross-section.

We begin by zooming in on the dealer level to assess whether dealers who trade across mar-

kets and products achieve better prices, or whether specialized dealers outperform. Specifically,

we examine dealer fixed effects from regression (4) for dealers exclusively active in a single

market—an extreme form of specialization. Appendix Figure A17 shows that many of these

dealers earn worse-than-average prices relative to the baseline dealer, potentially due to lower

trading volume. However, outcomes vary by market. In the bond market, the second-best

dealer is a bond-only trader, suggesting successful specialization. In the derivatives market,

specialization appears even more advantageous: a substantial share of high-performing dealers

trade only derivatives, possibly reflecting the relative complexity of these products compared

to equities and bonds.

Supporting the notion of market specialization, we find little evidence that dealers who

perform well in one market also perform well in others. Figure 7 shows no significant cross-

market correlations in dealer fixed effects from regression (4) for dealers active in multiple

markets. Appendix C provides analogous evidence in favor of strong product specialization,

showing that few dealers outperform across multiple products.

Next, we leverage cross-sectional variation across dealers in their product and market spe-

cialization scores (1) and (2). Ideally, we would want to know if specialization causes special-

ized dealers to trade at different prices compared to non-specialized ones.

A first naive approach would be to regress margins on specialization scores, in addition to

the same control variables and fixed effects we have used above, for regression (4).

marginτ = α+ βmarket specializationy jm + γcontrolsτ + ζt + ζws + ετ, (5)

and similarly with product specialization, which varies by year, dealer, market and product:

product specializationy jmp.21

A natural and pressing concern in interpreting these regressions is reverse causality: spe-

cialization may help dealers obtain better prices, but better prices may also lead dealers to

specialize. As a result, the estimates may be biased, reflecting the broader endogeneity of

prices and quantities in equilibrium.

We adopt two complementary approaches to mitigate endogeneity concerns. Our first ap-

proach is to lag specialization scores to examine whether dealers who were more specialized

21For completeness, we report estimation outputs from regression (5) in Appendix Table A9
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last year obtain better prices today. Specifically, we estimation regression (5), but replace

market specializationy jm by market specializationy−1, jm and similarly for the product special-

ization scores. This would provide the causal effect of specialization on margins if past spe-

cialization is exogenous to current pricing—that is, if dealers did not choose last year’s spe-

cialization based on anticipated future margin opportunities, and if there are no unobserved

time-varying dealer-level factors affecting both specialization and pricing.

Table 7 presents the regression results, showing that dealers with higher specialization

scores in the previous year earn larger margins today. The relationship is stronger for product

specialization than for market specialization. For example, on the stock exchange, moving from

no market specialization (score of 0) to full specialization (score of 1) increases margins by 3.8

basis points; a full shift in product specialization raises margins by 41 basis points. Given the

large trading volumes dealers manage over the year, even these seemingly modest per-trade

gains translate into substantial monetary value.

Our second approach is to instrument for specialization scores in regression (5)—that is,

to find an observable variable that affects margins only through its influence on specialization.

Identifying valid instruments that allow us to disentangle quantity and price effects is notori-

ously difficult, as emphasized in the growing literature on demand estimation following Koijen

and Yogo (2019).22

We use client orders on the stock exchanges—where we observe a sufficient volume of

such orders—as an instrument for dealer specialization when dealers trade for their own ac-

counts.23 The idea is that dealers have limited discretion over client orders, which must be

executed promptly. For example, a retail investor placing a stock order through a Fidelity bro-

kerage account will have that order executed automatically by Fidelity. These client orders

generate variation in dealer specialization that is plausibly unrelated to the margins dealers

earn on their own-account trades. If this exclusion restriction holds—conditional on our stan-

dard control variables and fixed effects—the instrument allows us to identify the causal effect

of specialization on stock market margin.

22Common instruments include stock index inclusions (e.g., Shleifer (1986); Chang et al. (2015);
Pavlova and Sikorskaya (2023)); capital flows (e.g., Coval and Stafford (2007); Ben-David et al.
(2022)); announcements of quantitative easing (e.g., Krishnamurthy and Vissing-Jørgensen (2011));
COVID-19 stimulus programs (e.g., Greenwood et al. (2022)); variation in government bond supply
(e.g., Krishnamurthy and Vissing-Jørgensen (2012)); unexpected inventory shocks to dealers (e.g.,
Allen and Wittwer (2023)); and regulatory constraints such as investment mandates (e.g., Koijen and
Yogo (2019)).

23We cannot apply the same strategy to the derivatives or bond markets. For derivatives, too few
active traders receive enough client orders to construct a meaningful instrument. For bonds, client
orders are not observed.
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Table 7: Correlation between margins and last year’s specialization scores

Stocks Bonds Derivatives

Lagged market specialization 0.038*** 0.008 0.218***
(0.002) (0.006) (0.049)
[0.001] [0.001] [0.011]

Lagged product specialization 0.413*** 0.065*** 0.290***
(0.004) (0.014) (0.052)
[0.001] [0.004] [0.009]

Controls Yes Yes Yes Yes Yes Yes
Fixed effects Yes Yes Yes Yes Yes Yes

N 87,299,519 87,299,519 5,358,555 5,358,555 3,350,296 3,350,296
R2 0.008 0.009 0.017 0.017 0.038 0.038
Within-R2 0.000 0.001 0.000 0.000 0.000 0.000

Table 7 shows the estimation results from regressing margins (3) on our specialization measures (1) and (2) from
last year, respectively, for each market separately, using all trades. In all regressions we include the same control
variables and fixed effects as in regression (6): trade size, account-types for the exchange, trade-type for the
bond market, dealer-types, date fixed effects and security-year-week fixed effects. We cluster standard errors at
the daily-level and report conventionally computed robust clustered standard errors in round brackets, and wild-
bootstrapped standard errors in squared brackets. The stars reflect to the larger standard errors.

The IV-estimates, reported in Tables 8, suggest that more specialized dealers obtain prices

that are roughly 30 basis points better than average.24 The OLS estimate for market specializa-

tion is smaller than the IV estimate, while the OLS estimate for product specialization is larger,

though the difference is not statistically significant at the 5% level. A downward bias in the

OLS estimate could arise from omitted variables that induce a negative correlation between the

error term and specialization. For example, more specialized dealers may be more efficient and

thus willing to accept lower margins. Conversely, an upward bias could result from positive

correlations—for instance, if dealers choose to specialize in products or markets where they

already enjoy favorable pricing conditions due to strong client relationships or reputational

advantages.

Neither of our strategies to address endogeneity is without limitations. For example, if

dealers are forward-looking and build specialization in anticipation of future pricing advan-

tages, lagged specialization scores are not exogenous. Similarly, the IV approach hinges on an

exclusion restriction that could be violated if clients systematically direct orders to dealers who

secure better prices on their own-account trades. However, we view this risk as limited: clients

do not observe transaction prices, which are private to exchange members and the exchange

24Appendix Table A10 shows the analogous results for the derivative exchange, where we include
margins from all trades, not just trades for dealer-accounts to obtain sufficient power. The exclusion
restriction is therefore more restrictive.
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Table 8: IV regressions of margins on specialization scores for stocks

(First Stage) (OLS) (IV)

sc
y jm -0.442***

(0.003)
[0.002]

Market specialization 0.134*** 0.385***
(0.004) (0.024)
[0.001] [0.000]

Controls Yes Yes Yes
Fixed effects Yes Yes Yes

N 27,300,881 30,356,466 27,300,881
R2 0.349 0.124 0.126
Within-R2 0.012 0.000 0.000

(First Stage) (OLS) (IV)

sc
y jmp -0.206***

(0.002)
[0.001]

Product specialization 0.335*** 0.284***
(0.008) (0.037)
[0.002] [0.001]

Controls Yes Yes Yes
Fixed effects Yes Yes Yes

N 27,300,881 30,356,466 27,300,881
R2 0.349 0.124 0.126
Within-R2 0.012 0.000 0.000

Table 8 shows the IV estimation results for own-account stock market trades. Consider the LHS of 8. In column
(First Stage), we show the first stage of the two stage least square estimator—regressing the market specialization
score (1) on the fraction of all client-orders dealer j executes in market m in year y relative to other dealers,
sc

y jm ∈ [0,1]. In column (OLS) we present the OLS coefficient from regressing margins on market specialization,
using trades for the dealer’s own account for the stock market, and all trades for the derivatives market. In column
(IV) we depict the corresponding IV estimate. The table on the RHS shows the analogous for product specialization,
where the instrument is the fraction of all client-orders for product p dealer j executes in market m in year y relative
to other dealers, sc

y jmp ∈ [0,1]. In all regressions we include the same control variables and fixed effects as in
regression (6): trade size, account-types for the exchange, dealer-types, date fixed effects and security-year-week
fixed effects. We cluster standard errors at the daily-level and report conventionally computed robust clustered
standard errors in round brackets, and wild-bootstrapped standard errors in squared brackets. The stars reflect to
the larger standard errors.

operator, making such selection unlikely to be a first-order concern. More importantly, both

approaches—despite their individual limitations—yield a consistent pattern: more specialized

dealers obtain better prices.

6 Conclusion

We analyze dealer specialization across bond, stock, and derivative markets using a unique

dataset that tracks trading activity across all major Canadian financial markets. Our findings

show that product specialization within a market is stronger than market specialization, though

not all dealers participate in every market. While no market is frictionless enough to prevent

some dealers from consistently securing better prices, we find no evidence of cross-market

or cross-product trading synergies. These results challenge the traditional view that financial

intermediaries operate seamlessly across markets and products, and underscore the importance

of market structure and product complexity in driving market fragmentation.
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ONLINE APPENDIX

Market and Product Specialization in Financial Markets

by Milena Wittwer, and Andreas Uthemann

Section A provides details regarding data cleaning.

Section B provides mathematical details for our specialization indices.

A Data cleaning

Data Restrictions. Our bond data includes all bond trades that are reported by CIRO-dealers

to MTRS.20, excluding foreign sovereign bonds. We exclude primary market trades. In rare

cases, trades are reported on a weekend. We treat those cases as trades that occur on the

Monday following the weekend.

We include all stock-market trades, including those executed during the opening and closing

auctions. In rare cases, trades are associated with negative trade amounts. We exclude those

trades.

We keep regular derivative trades, and excludes rare cases of trades involving ‘test futures’.

In rare cases, trades are reported on a weekend. We treat those cases as trades that occur on

the Monday following the weekend. We exclude a handful of dates where only Buy-ins are

trading.

Quality Check. We compare the average monthly trade volume on the stock markets with the

publically available information that is provided in CIRO’s website to confirm that we observe

close to 100% of the trades we should observe.

We also compare the derivative trade volume with information provided on MX’s website.

After restricting the raw data, as explained above, we observe roughly 90% of trade volume

on average.

Our bond data is provided directly by the regulator and serves as the source for publicly

available information on bond market trading volumes. We therefore do not cross-validate it

against reported figures.

Type Classification for Dealers. The Bank of Canada classifies traders based on their LEIs

into types following their in-house methodology. We replicate their approach to classify deal-

ers on the stock exchanges and the derivative exchange, and to classify the parent-holding

company of each LEI (see Appendix Table A4). Here we briefly describe their approach.

1
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We use two types of information to classify entities – “Direct” and “Indirect” sources of in-

formation. “Direct” information refers to any information provided by the entity itself - either

through its official website, internal documents, spokespersons, a regulatory organization to

which it reports, etc. “Indirect” information refers to any information which is not direct infor-

mation. The latter is further broken down into two sub-types: “Reliable" or “Weakly reliable".

For the dealers in this project, all information comes from reliable sources, such as Bloomberg,

Yahoo Finance, CapEdge, etc.

B Theil Index

To define the dealer-specific measure, consider a fixed dealer j. Let there be M markets, in-

dexed by m, and Pm products within each market m, and P =
∑

m Pm products overall, in-

dexed by p. Denote dealer j’s share of total volume traded by dealers in product-market seg-

ment mp by s jmp ∈ [0, 1]. The cross-product average for a dealer within a market is given by

s̄ jm =
1
P

∑

p s jmp, and s̄ j =
1

M×P

∑

m

∑

p s jmp the overall average.

The standard Theil T index in this setting is defined as:

T j =
1

M × P

∑

m

∑

p

�

s jmp

s̄ j

�

ln

�

s jmp

s̄ j

�

. (6)

This index captures the distribution of dealer j’s market share across product-market segments.

If the dealer trades the same fraction of total volume in each segment, T j = 0. A positive T j

indicates specialization, with higher values reflecting greater variation in the dealer’s activity

across segments.

For our purposes, the original index is not suitable because it fails to account for the fact

that non-participation by dealers in a market or market-segment increases specialization. The

original formulation only sums the trade volume of dealers who are active in a market, ignoring

those who are inactive. To address this, we introduce a non-participation cost, ξ, which applies

when a dealer does not trade in market mm (i.e., when s jm = 0):

T j =
1

M × P

∑

m

∑

p

I(s jmp > 0)

�

s jmp

s̄ j

�

ln

�

s jmp

s̄ j

�

︸ ︷︷ ︸

Standard Theil index conditional on participation

+
1

M × P

∑

m

∑

p

I(s jmp = 0)ξ

︸ ︷︷ ︸

Non-participation

.

The magnitude of the index depends on the size of the penalty, ξ, which can be chosen ar-

bitrarily. As a result, the index by itself is not informative in absolute terms. However, it is

valuable for comparing specialization within a market across products to specialization across

2



different markets, which is our primary objective.

To see this, note that the index decomposes into two components: one measuring within-

market specialization, T w
j , and another measuring across-market specialization, T a

j :

T j = T a
j + T w

j , with T w
j =

1
M

∑

m

T w
jm, where

T w
jm =

1
P

∑

p

I(s jmp > 0∪ s̄ jm > 0)

�

s jmp

s̄ j

�

ln

�

s jmp

s̄ jm

�

+ ξI(s jmp = 0∪ s̄ jm > 0)

measures the how dealer j’s market share in a market-product segment is distributed across

products in market m, with more uneven distributions meaning higher specialization; and

T a
j =

1
M

∑

m

I(s̄ jm > 0)

�

s̄ jm

s̄ j

�

ln

�

s̄ jm

s̄ j

�

+ ξI(s̄ jm = 0)

measures how the average of this market share across products is distributed across markets.

As for the standard Theil index, the minimum value for both measures is 0, which is the

case when a dealer distributes their trading activity evenly across products in a market for T w
jm,

or on average across markets for T a
j . The maximum value is given by M , Pm and ξ, namely,

T
w

jm =
1

Pm
[M Pm ln (Pm) + (Pm − 1)ξ], and T

a

j =
1
M [M ln (M) + (M − 1)ξ].

C Additional evidence: product specialization and prices

To detect cross-product price effects, we add product indicators to regression (4), and estimate

the following regression for each market separately:

marginτ = α+
∑

p

∑

j

β jpI(dealer= j and product= p) + γ · controlτ + ζt + ζws + ετ. (7)

If the same dealer obtains similar margins across products within a market compared to the

baseline, all β jp coefficients would be similar in size. If the dealer is more successful when

trading some products relative to others, these coefficients would differ. As before, we include

day and security-week fixed effects to avoid potential biases that arise from time-variation in

the traded securities.25 For bonds, the baseline is a large primary dealer trading government

bonds, for stocks it is that bank trading large stocks, and for derivative it is that bank trading

25As robustness, we also estimate a specification with only include day-fixed effect to exploit variation
of margins across securities within the same product category. While the size of the coefficients differs,
the main take away (Fact ?? is robust).

3



Treasury futures.26

We visualize the estimation outcome through heatmaps, one for each market, in Appendix

Figure A22. Since estimating regression (7) is computationally intensive, especially for the

stock market, we estimate it for each of the years in our sample separately, and report results

for 2022. A row in the heatmap correspond to a dealer j. A column corresponds to a product p.

When dealer j obtains systematically worse margins for product p, we color the corresponding

jp cell red, meaning that the β jp coefficient is negative and statistically different from zero.

The cell is black if the dealer outperforms the other dealers, and empty if they either do not

trade product p or the coefficient is not statistically significantly different from zero.

If the one dealer were to outperform (underperformed) the baseline across products, we

would observe a black (red) line for that dealer. This is not the case for any dealer in any

market—a take away that is robust across years, while the β estimates vary. Crucially, since the

margin measure reflects price volatility over a day, this analysis does not imply that some prod-

ucts are inherently more profitable—we do not account for underlying trading costs. Rather,

the key takeaway is that no dealer consistently outperforms all others across products, pointing

towards product specialization in all markets.

26We clustered at the daily-level, and compute standard errors via wild-bootstrapping. This is useful
not only because it circumvents issues that arise from uneven cluster sizes, but also because many
indicator variables in regression (7) are zero, since dealers tend to specialize in specific products. This
implies that the standard cluster-robust covariance matrix is close to singular (non-invertible) due to
high correlation within some clusters with many zeros. Since wild-bootstrapping resamples residuals
with cluster-dependent perturbations, and does not directly rely on inverting the covariance matrix,
bootstrapping circumventing the issue.
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Appendix Table A1: Fixed-income products

Product Description
Government Bond Government of Canada Bond, Government of Canada Real Return Bond, Government

of Canada T-bill
Corporate Bond Corporate Bond
Provie, Munie Provincial Bill, Provincial Bond, Provincial Commercial Paper, Municipal Bond
Bank, Agency Paper Bank Commercial Paper and Bank Security - Note/Bond/Debenture. Agency Bond

and Agency Commercial Paper
Bankers’ Acceptance Bankers’ Acceptance
ABS, MBS, CMB Mortgage-Backed Security, Asset-Backed Security, Canada Mortgage Bond.
Strip Agency Strip Bond, Bank Strip Bond, Corporate Strip Bond, Finance company Strip

Bond, Government of Canada Strip Bond, Municipal Strip Bond, Provincial Strip Bond

Appendix Table A2: Equity products

Product Description
Large Stock Symbols without suffices (i.e., common shares) that are listed with missing sp-type

with more than 2 billion of quoted market value
Small Stock Symbols without suffices (i.e., common shares) that are listed with missing sp-type

with less than 2 billion of quoted market value
Exchange Traded Funds Symbols that are listed with sp-type being Exchange Traded Funds
Uncommon Shares Symbols which suffices that aren’t listed as Exchange Traded Funds, which include

the the following types: preferred stocks, class A-C, notes, debentures, equity divi-
dends, when-issued capital pool companies, warrants, redeemable common stocks,
U.S. funds, units, subscr. receipts, and stocks that trade on the NEX market

Others or Missing Symbols without suffices that have a non-missing sp-type, which include the follow-
ing sp-types: Income Trust, Fund of Equities, Commodity Funds, Exchange Traded
Receipt, Split Shares, Fund of Mortgages/MBS, Fund of Debt

Appendix Table A3: Derivative products

Product Description/Symbols if available
Treasury futures Government bond futures and future options; CGZ, CGF, CGB, LGB, OGZ, OGF, OGB
Short-term derivatives BAX futures and future options, CORRA futures; BAX, OBW, OBX, OBY, or OBZ, CRA
Equity options and share fu-
tures

Equity option, weekly option, option on ETFs, share futures

Currency options Options on USD; USX
Index options and futures Index futures and options; SXF, SCF, SXB, SXY, SXK, SXJ, SEG, SXM, SXA, SXH, SXO, SXU, SXV,

SCG, SDV
Bundles and spreads User-defined strategy, inter-group strategies, spreads

Notes: Appendix Tables A1–A3 describe our product classification for the bond, stock, and derivative market,
respectively.
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Appendix Table A4: Dealer types classification

Broker Financial entity whose purpose is to offer brokerage services
Investment Bank Investment bank
Bank Bank, retail bank or credit union, and any entity that is deposit taking
Asset Manger Financial entity whose purpose is to manage assets (or investments) and/or offer in-

vestment advising services. Entities that manage multiple types of funds such as HF,
MF or ETFs are also classified as such

Mutual Fund Financial entity that is a mutual fund or a mutual fund manager
High-Frequency Trader Financial entity that is a hedge fund or a hedge fund manager; Private Equity, or

Proprietary Trader
Pension Fund and Insurance Financial entity whose purpose is to manage investments (and/or provide services)

related to pension, retirement, insurance, re-insurance, benefits, and superannuation
funds

Retail Financial entity whose purpose is to offer financial services to retail (non-institutional)
investors

Other This category includes all other types which we observe in our traded data. From the
Bank of Canada classification we pool the following types under this category “Real
Estate (a financial or non-financial entity that is involved in the construction, financ-
ing, management, or sale of commercial, industrial, or residential real estate), “Other"
(Financial entity that does not fall in any of the aforementioned classifiers (e.g., Finan-
cial Planner, Financial Research Services, Execution Platform)), Uncategorized (entity
that can neither be classified as a financial nor a non-financial entity due to lack of in-
formation), “Non-financial entity". We also include Buy-Ins that execute some trades
on the exchanges here.

Notes: Appendix Table A4 explains the classification of trader types we adopt following the methodology of
Bank of Canada staff.
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Appendix Table A5: Daily trade volume, number of active dealers, trade-sizes, and prices

Variable Mean Median Min Max Std
Daily Trade Volume

Stocks (in mil) 661.053 613.824 155.859 1746.480 209.427
Bonds (in bn C$) 71.723 68.410 0.196 1,504.660 54.771
Derivatives (in k) 340.366 323.155 1.487 1,017.150 126.632

Number of Active Dealers (LEIs)
Stocks 64.157 64.0 61.0 69.0 1.630
Bonds 61.041 62.0 5.0 84.0 7.794
Derivatives 53.617 54.0 21.0 57.0 3.019

Number of Active Dealers (Parents)
Stocks 60.705 61.0 58.0 64.0 1.180
Bonds 57.394 58.0 11.0 71.0 6.636
Derivatives 47.737 48.0 21.0 51.0 2.668

Trade size
Stocks 11875.7 1300.0 0.1 7.361×107 74,694.1
Bonds (in mil C$) 10.934 1.250 1.0/106 7.189×105 436.177
Derivatives 78.143 10.0 1.0 170,478.0 667.365

Trade price
Stocks (in C$) 27.280 12.240 0.005 2,392.4 86.936
Bonds (in C$) 102.344 100.24 1.0 980.0 12.398
Derivatives (in C$) 20.809 1.060 -142.050 21,800.0 123.298

Notes: Appendix Table A5 summarizes trade data for stocks (TSX, TSXV, Alpha), bonds (MTRS), and derivatives
(MX) from 2019 to 2022. It provides the mean, median, minimum, maximum, and standard deviation of daily
trade volume, the number of active dealers (“Number of Dealers (LEI)") and parent institutions (“Parents"), trade
size, and trade price. For derivatives, trade size and volume reflect the number of contracts, not the underlying
asset value. There are 1,004 active trading days for stocks, 994 for derivatives, and 1,035 for bonds. Some bond
trades occur on Canadian holidays, when the Investment Industry Association of Canada (IIAC) recommends
pausing trading. These days, typically involving minimal activity, are excluded from the table but included in
the analysis with either lower-frequency aggregation or day-fixed effects to account for special cases. The stock
market features 6,449 symbols traded by 72 dealers and 66 parent institutions. The derivatives market, where
symbols often include contract details like expiration dates, has 503,056 symbols traded by 64 dealers and 56
parent institutions. In the bond market, 107,516 CUSIPs are traded by 163 dealers (CIRO dealer members in the
raw data) and 131 parent institutions. Only a subset of these dealers is active daily.
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Appendix Table A6: Member intersection: RHS: LEI-level of members; LHS—Parent level

Intersection TSX ALPH TSXV
All 99.97 100.0 99.68
TSX and ALPH 0.0 0.0 0.0
TSX and TSXV 0.03 0.0 0.32
ALPH and TSXV 0.0 0.0 0.0
TSX only 0.0 0.0 0.0
ALPH only 0.0 0.0 0.0
TSXV only 0.0 0.0 0.0

Intersection TSX ALPH TSXV
All 99.97 100.0 99.68
TSX and ALPH 0.0 0.0 0.0
TSX and TSXV 0.03 0.0 0.32
ALPH and TSXV 0.0 0.0 0.0
TSX only 0.0 0.0 0.0
ALPH only 0.0 0.0 0.0
TSXV only 0.0 0.0 0.0

Notes: Appendix Table A6 shows the percentage of total volume traded in each of the three stock exchanges
(TSX, TSXV, and Alpha) that is traded by brokers who trade on all segments (All), on TSX and Alpha, etc. Each
column sums to 100%. Total volume traded is computed by summing all quantities of all brokers including both
sides of the trade.

Appendix Table A7: Avg. weekly share traded by dealers per type (parent-level)

Dealer type MTRS TSX TSX-IN MX MX-IN
Asset Manager 0.27 1.70 0.98 0.68 0.00
Bank 74.13 56.05 35.77 27.12 19.05
Broker 12.32 13.47 16.46 9.12 2.02
High-Frequency Trader 0.86 10.70 24.24 34.94 72.07
Investment Bank 11.88 17.21 22.49 27.98 6.75
Other 0.00 0.00 0.00 0.11 1.11
Pension Fund and Insurance 0.50 0.23 0.03 0.00 0.00
Retail 0.02 0.60 0.00 0.07 0.00

Notes: Appendix Table A7 shows the fraction of trade volume by dealer type (at the parent-level) per market in
columns MTRS, TSX, and MX, respectively. In columns TSX-IN, and MX-IN we show the analogue but excluding
trades for client accounts for TSX and MX.
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Appendix Table A8: Symbol Suffixes on TSX/TSXV/Alpha

Symbol suffix Description
None Common shares
A, B, C Class A, B, C of shares is typically related to voting rights, access to dividend
DB Debenture, stock type that makes fixed payments at scheduled intervals of time, operates

similar to preferred stock
E Equity dividend
F
G
H NEX market provides a trading forum for listed companies that no longer meet the TSX

Venture’s ongoing listing standards; designed for companies that have low levels of business
activity or have ceased to carry on active business. It benefits such companies by giving
their stocks a degree of liquidity and providing visibility that may attract potential acquirers
or investors.

K NEX market
IR Installment receipts, is an equity issuance in which the purchaser does not pay the full

value of the issue up front. In the purchase of an installment receipt, an initial payment
is made to the issuer at the time the issue closes; the remaining balance must be paid in
installments, usually within a two-year period. Although the purchaser has not paid the
full value of the issue, he or she is still entitled to full voting rights and dividends.

J
L Legended shares. A legend is a statement on a stock certificate noting restrictions on the

transfer of the stock. A stock legend is typically put in place due to the requirements
established by the Securities and Exchange Commission (SEC) for unregistered securities.
A stock legend may or may not be legally required on the certificate itself, depending on
state laws.

M Booms
N Subscription receipts (second issue trading)
O Subscription receipts (third issue trading)
NO, NS, NT Exchange traded note (ETN) are unsecured debt securities that tracks an underlying index

of securities.
P Capital pool company (CPC) is an alternative way for private companies in Canada to raise

capital and go public. The capital pool company system was created and is currently regu-
lated by the TMX Group, and the resulting companies trade on the TSX Venture Exchange
in Toronto, Canada.

Q
PR, PF, PS Preferred shares; similar to common shares, no maturity date, ownership, fixed distribution

rate, no voting rights
PR.CLASS, PS.CLASS,
PF.CLASS

Preferred class

R Subscription receipts are defined as those limited term securities issued via prospectus,
which are convertible into another security class of the issuer (predominantly common
shares) at a set conversion rate based on the successful completion of a planned reorga-
nization or transaction. Where completion is not successful, security proceeds are either
returned to the subscriber or a more generous conversion rate is made available to the
subscriber.

RT Rights are instruments issued by companies to provide current shareholders with the oppor-
tunity to preserve their fraction of corporate ownership. Rights are short-term instruments
that expire quickly, usually within 30-60 days of issuance. The exercise price of rights is
always set below the current market price, and no commission is charged for their redemp-
tion.
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Appendix Table A9: Correlation between margins and specialization scores

Stocks Bonds Derivatives

market specialization 0.022*** 0.007 0.440***
(0.002) (0.005) (0.039)
[0.000] [0.001] [0.008]

product specialization 0.388*** 0.062*** 0.237***
(0.004) (0.009) (0.043)
[0.001] [0.003] [0.008]

Controls Yes Yes Yes Yes Yes Yes
Fixed effects Yes Yes Yes Yes Yes Yes

N 111,051,211 111,051,211 6,757,118 6,757,118 4,529,585 4,529,585
R2 0.008 0.009 0.017 0.017 0.036 0.036
Within-R2 0.000 0.001 0.000 0.000 0.000 0.000

Appendix Table A9 shows the estimation results from regressing margins (3) on our specialization measures (1) and
(2),respectively, for each market separately, using all trades. In all regressions we include the same control variables
and fixed effects as in regression (6): trade size, account-types for the exchange, trade-type for the bond market,
dealer-types, date fixed effects and security-year-week fixed effects. We cluster standard errors at the daily-level
and report conventionally computed robust clustered standard errors in round brackets, and wild-bootstrapped
standard errors in squared brackets. The stars reflect to the larger standard errors.

S Special U.S. terms
T Special US trading terms (second issue trading)
U U.S. dollar
V U.S. dollar (second issue trading)
UN Units are a securities that is made up of one common share and half a warrant. Units are

commonly offered by special-purpose acquisition companies, or SPACs that are seeking to
raise money in a public stock offering and trade on a stock exchange with the primary goal
of merging with a private business and taking it public.

W When issued
WB
WR
I When issued (second issue trading)
WT Warrants give the holder the right to purchase a company’s stock at a specific price and at

a specific date.
X
Y Redeemable common. Redeemable shares are shares that a company has agreed it will,

or may, redeem (in other words buy back) at some future date. The shareholder will still
have the right to sell or transfer the shares subject to the articles of association or any
shareholders’ agreement.

Notes: Appendix Table A8 describes the meaning of all suffixes of symbols trades on TSX, TSXV, or Alpha. An
empty cell means that we were not able to find the description of a symbol that we observe in the raw data.
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Appendix Table A10: IV regressions of margins on specialization scores for derivatives

(First Stage) (OLS) (IV)

sc
y jm -1.291***

(0.061)
[0.014]

Market specialization 0.440*** 1.691***
(0.039) (0.258)
[0.008] [0.007]

Controls Yes Yes Yes
Fixed effects Yes Yes Yes

N 2,911,210 4,529,585 2,911,210
R2 0.495 0.036 0.125
Within-R2 0.032 0.000 0.000

(First Stage) (OLS) (IV)

sc
y jmp -1.353***

(0.039)
[0.007]

Product specialization 0.237*** 0.389*
(0.043) (0.155)
[0.008] [0.008]

Controls Yes Yes Yes
Fixed effects Yes Yes Yes

N 2,911,210 4,529,585 2,911,210
R2 0.534 0.036 0.125
Within-R2 0.164 0.000 0.000

Appendix Table A10 show the IV estimation results for all trades on the derivatives market. Consider the LHS of
8. In column (First Stage), we show the first stage of the two stage least square estimator—regressing the market
specialization score (1) on the fraction of all client-orders dealer j executes in market m in year y relative to
other dealers, sc

y jm ∈ [0, 1]. In column (OLS) we present the OLS coefficient from regressing margins on market
specialization, using trades for the dealer’s own account for the stock market, and all trades for the derivatives
market. In column (IV) we depict the corresponding IV estimate. The table on the RHS shows the analogous for
product specialization, where the instrument is the fraction of all client-orders for product p dealer j executes in
market m in year y relative to other dealers, sc

y jmp ∈ [0, 1]. In all regressions we include the same control variables
and fixed effects as in regression (6): trade size, account-types for the exchange, dealer-types, date fixed effects and
security-year-week fixed effects. We cluster standard errors at the daily-level and report conventionally computed
robust clustered standard errors in round brackets, and wild-bootstrapped standard errors in squared brackets.
The stars reflect to the larger standard errors.

Appendix Figure A1: Dealer market shares, sy jm ∈ [0, 1], in an average year (parent-level)

(a) Banks (b) High-frequency traders

Notes: Appendix Figures A1a and A1b are analogous to Figure 2a but only includes banks, and high-frequency
traders, respectively. It plots all bank/high-frequency dealer j’s market shares for each market m, averaged across
years. The stars show each dealer’s stock market share on the y-axis and their derivatives market share on the
x-axis; the circles show the stock versus bond market shares and the crosses the bond versus derivative market
shares, on the y-axis and x-axis respectively.
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Appendix Figure A2: Dealer market shares, excluding client-accounts, in an average year

(a) All dealers (b) Largest dealers

(c) Banks (d) High-frequency traders

Notes: Appendix Figure A2a is analogous to Figure 2a but excludes trades for client accounts on the exchanges.
It plots all dealer j’s market shares (of trades for non-client accounts) for each market m, averaged across years.
The stars show each dealer’s stock market share on the y-axis and their derivatives market share on the x-axis;
the circles show the stock versus bond market shares and the crosses the bond versus derivative market shares,
on the y-axis and x-axis respectively. Figure zooms in on dealers who trade at least 5% of the non-client market
share in one of the three markets. In Figures A2c and A2d we only consider banks, and high-frequency traders,
respectively.
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Appendix Figure A3: Dealer market shares, excluding client-accounts, in an average year (LEI-
level)

(a) All dealers (b) Largest dealers

(c) Banks (d) High-frequency traders

Notes: Appendix Figure A3 is analogous to Figure 2a but for dealers at the LEI-level rather than the parent-
level. It plots all dealer j’s market shares for each market m, averaged across years. The stars show each dealer’s
stock market share on the y-axis and their derivatives market share on the x-axis; the circles show the stock versus
bond market shares and the crosses the bond versus derivative market shares, on the y-axis and x-axis respectively.
Figure zooms in on dealers who trade at least 5% of the non-client market share in one of the three markets. In
Figures A3c and A3d we only consider banks, and high-frequency traders, respectively.
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Appendix Figure A4: Fraction of monthly trade volume by dealers active in all markets

(a) Including all trades (b) Excluding client trades (for TSX/MX)

Notes: Appendix Figure A4a shows the fraction of monthly trade volume by those active in all markets, for each
market (MTRS, TSX, MX). Appendix Figure A4b excludes trades for client accounts.

Appendix Figure A5: Fraction of monthly trade volume by primary dealers active in all markets

(a) Including all trades (b) Excluding client trades (for TSX/MX)

Notes: Appendix Figure A5a shows the fraction of monthly trade volume by primary dealers who are active
in all markets. The graph implies that, in the bond market, essentially all dealers who are active in all markets
are primary dealers. Roughly 68% of trade volume on TSX is executed by primary dealers who are active in all
markets, which means that that 80%-68%=12% of trade volume is executed by dealers who are active across
markets but are not primary dealers. Figure A5b excludes trades for client accounts.
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Appendix Figure A6: Fraction of securities traded by each dealer out of all securities on TSX,
MX, MTRS

Notes: Appendix Figure A6 shows the fraction of symbols (x-axis) that each dealer trades (at the parent-level,
on the y-axis) out of all traded symbols for each market. Since we sort by size within each market, the y-axis
doesn’t represent dealer-IDs that are common across markets. This is an alternative way of showing product dif-
ferentiation: it is highest in the fixed-income market, and lowest on the stock exchange. The derivative exchange
is in between.

15



Appendix Figure A7: Dealer presence across asset-types (defined by the symbol suffix)

Notes: Appendix Figure A7 shows whether each of the dealers is active (i.e., trades at least ones) in white,
versus in-active in white for each asset-class, defined according to the symbol-suffix within the stock markets at
the parent-level. Suffices are explained in Appendix Table A8.

Appendix Figure A8: Dealer presence and market shares across all derivative products

Notes: The RHS of Appendix Figure A8 is the analogue to Figure 4c but includes the small product “Currency
Options". On the RHS we show whether dealers trade each product at least once in black. On the LHS we see the
average annual product market shares of the largest dealers (on the LHS) for each market. In all figures, each
row represents a dealer, sorted by total trade volume in the respective market. Dealers with the highest overall
trade volume appear at the bottom, while those with the lowest appear at the top.
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Appendix Figure A9: Dealer presence and market shares across products in the stock and
derivative market (excluding market-maker accounts)

(a) Stock market

(b) Derivatives market

Notes: Appendix Figure A9 is similar to Figure 4 but excludes trades for market-marker accounts. On the RHS
we show whether dealers trade each product at least once in black. On the LHS we see the average annual product
market shares of the largest dealers (on the LHS) for each market. In all figures, each row represents a dealer,
sorted by total trade volume in the respective market. Dealers with the highest overall trade volume appear at
the bottom, while those with the lowest appear at the top.

Appendix Figure A10: Dealer presence across products of dealers present in all markets

(a) MTRS (b) TSX (c) MX

Notes: Appendix Figure A10 is the analogue to Figure 4, but includes the small product “Currency Options" for
MX. It shows whether dealers who trade in all markets trade a product at least once in black, versus not in white
within the bond (MTRS), stock (TSX), and derivatives market (MX).
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Appendix Figure A11: Within-and cross-market segmentation indices

(a) Indices of all dealers

(b) Indices of largest dealers

Notes: Appendix Figure A11a shows the within-market, across-market, and total adjusted Theil index for each
dealer ID (at the parent-level). In the white area are dealer’s who are active in all markets, in the light gray area
are dealers who are active in only two markets, and in the darker gray shaded area are dealers who are active
in only one market. The punishment term is 5; the maximal across market index is 4.431, and the maximal
within market index is 8.82 for the stock market, 10.1234 for the bond market, and 10.6133 for the derivatives
exchange. Figure A11b zooms in on the dealers who are active in all three markets.
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Appendix Figure A12: Margins

Appendix Figure A12 shows the margin (3) for an average price of 10 in black,
and the linear approximation in dashed lines.

Appendix Figure A13: Margin distribution in each market

(a) Bonds (b) Stocks (c) Derivatives

Appendix Figure A13 shows the distribution of our margin measure (3), which approximates how much less
(more) a trader paid compared to the average price for a security in a day when buying (selling) for for each
market. We exclude outliers, which are outside of the interquartile range. The median (average) margin is 0%
for bonds, 0.005% for stocks, and 0% (0.18%) for derivatives. The standard deviation of margins is 1.59 for
bonds, 2.03 for stocks, and 12.50 for derivatives. In comparison, the median trade price is C$100.29 for bonds,
C$12.27 for stocks and C$1.1 for derivatives. The standard derivation in prices is 12.11 for bonds, 87.18 for
stocks, and 157.35 for derivatives (where most of the variation is coming from the cross section of derivative
contracts).
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Appendix Figure A14: Price and margin distribution for equity products

(a) Small Stock (b) Large Stocks

(c) Uncommon shares (d) ETFs

(e) Other or Missing

Notes: Appendix Figure A14 shows density histograms of prices for each product on TMX, excluding obser-
vations outside of the inter-quartile range.
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Appendix Figure A15: Price and margin distribution for bonds

(a) Government Debt (b) Provincial and Municipal

(c) Bankers’ Acceptance (d) Bank/Agency bonds

(e) Corporate Debt (f) ABS/MBS/CMB

(g) Strips

Notes: Appendix Figure A15 shows density histograms of prices for each product on the fixed-income market,
excluding observations outside of the inter-quartile range.
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Appendix Figure A16: Price and margin distribution for derivatives

(a) Treasury futures (b) Short Rate Derivatives

(c) Index Options and Futures (d) Bundles and Spreads

(e) Equity Options and Share Futures (f) Currency Options

Notes: Appendix Figure A16 shows density histograms of prices for each product on MX, excluding observa-
tions outside of the inter-quartile range.
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Appendix Figure A17: Dealer coefficients for dealers who exclusively trade in one market

(a) Stock market (b) Bond market (c) Derivative market

Notes: Appendix Figures A17a shows the dealer coefficients and 95% confidence intervals, which are obtained
via WCR bootstrapping, when regressing margins (3) of a trade on indicator variables for each dealer that is only
active on stock exchanges, and not on the bond market, (at the LEI-level) in addition to control variables (trade-
size, the account-type, security-week and day fixed effects). Figure A17b shows the analogue for the fixed-income
market, where we replace the account-type with a variable that indicates the type of trade. Figure A17c shows the
analogue for the derivatives market. In all graphs, we exclude dealer coefficients that aren’t significantly different
from zero at a significance level of 5% according to bootstrapped and conventional inference to be conservative.
We sort coefficients from small to large. Therefore, the x-axis are not comparable across markets, since they don’t
reflect the dealer’s IDs.

Appendix Figure A18: Robustness—Dealer coefficients that are statistically different from zero
at 5% significance level (conventional inference)

(a) Stocks (b) Bonds (c) Bonds

Notes: Appendix Figure A18 is the analogue to Figure 6 but with confidence intervals that are computed in
the conventional way (without bootstrapping). For bonds, where clusters are most uneven in size, convention-
ally computed standard errors and confidence intervals differs slightly from bootstrapped confidence intervals—
confirming expectations. Figure A18a shows the dealer coefficients when regressing margins (3) of a trade on
indicator variables for each dealer active on the stock exchanges in addition to control variables (trade-size, the
account-type, security-week and day fixed effects). Figure A18c shows the analogue for the derivatives exchange.
Figure A18b shows the analogue for the fixed-income market, where we replace the account-type with a variable
that indicates the type of trade (dealer-dealer, dealer-client, dealer-broker). In both graphs we exclude dealer
coefficients that aren’t significantly different from zero at a significance level of 5% according to bootstrapped
and conventional inference. We sort coefficients from small to large. Therefore, the x-axis are not comparable
across markets, since they don’t reflect the dealer’s IDs.
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Appendix Figure A19: Robustness—Dealer coefficients that are statistically different from zero
at 5% significance level (parent-level)

(a) Stocks (b) Bonds (c) Bonds

Notes: Appendix Figure A19 is the analogue to Figure 6 but aggregating dealer LEIs to the parent-level. Figure
A19a shows the dealer coefficients when regressing margins (3) of a trade on indicator variables for each dealer
active on the stock exchanges in addition to control variables (trade-size, the account-type, security-week and day
fixed effects). Figure A19c shows the analogue for the derivatives exchange. Figure A19b shows the analogue
for the fixed-income market, where we replace the account-type with a variable that indicates the type of trade
(primary dealer/broker with non-primary dealer/non-broker, on-primary dealer/non-broker with non-primary
dealer/non-broker, or primary dealer/broker with primary dealer/broker). In both graphs we exclude dealer
coefficients that aren’t significantly different from zero at a significance level of 5%. We sort coefficients from
small to large. Therefore, the x-axis are not comparable across markets, since they don’t reflect the dealer’s IDs.

Appendix Figure A20: Robustness—Cross-market correlation between dealer coefficients of
dealers active in all markets (conventional inference)

(a) Bonds-stocks (b) Bonds-derivatives (c) Stocks-derivatives

Notes: Appendix Figure A20a is analogous to Figure 7a but with confidence intervals computed in the conven-
tional way without bootstrapping. It shows the within-dealer correlation of coefficients in the bond (y-axis) versus
stock market (x-axis), (b) and (c) show the correlation for the other two market pairs. We exclude dealer coeffi-
cients that aren’t significantly different
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Appendix Figure A21: Robustness—Cross-market correlation between dealer coefficients of
dealers active in all markets (parent-level)

(a) Bonds-stocks (b) Bonds-derivatives (c) Stocks-derivatives

Notes: Appendix Figure A21 is analogous to Figure 7a but uses dealer LEIs at the parent-level. It shows the
within-dealer correlation of coefficients in the bond (y-axis) versus stock market (x-axis), (b) and (c) show the
correlation for the other two market pairs. We exclude dealer coefficients that aren’t significantly different from
zero at a significance level of 5%.

Appendix Figure A22: Dealer specialization across products within a market — 2022

(a) Stocks (b) Bonds (c) Derivatives

Notes: Appendix Figure A22a visualizes the dealer-product coefficients, β jp, from regression (7)—which regresses
trade margins (3) on indicator variables for each dealer-product combination plus control variables (trade-size,
the account-type, security-year-week and day fixed effects)—using data from 2022. A row in each heatmap
correspond to a dealer j, a column corresponds to a product p. When the corresponding β jp is positive and
statistically significant from zero at a 5% significance level, a p- j cell is black; if it is negative it is red; and empty
if the coefficient is not statistically different from zero. Figure A22b and A22c show the analogue for bonds and
derivatives. For bonds, the baseline βp j coefficient is a large primary dealer trading government bonds; for stocks
it’s that bank trading large stocks, and for derivative it’s that bank trading Treasury futures. In all graphs, dealers
are sorted according to their trade-volume, with the dealer trading the most in the given market being at the
bottom, and the dealer trading the least at the top. Standard errors are clustered at the daily-level.
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Appendix Figure A23: Robustness: Dealer specialization across products within a market
(parent-level) — 2022

(a) Stocks (b) Bonds (c) Derivatives

Notes: Appendix Figure A23 is analogous to Appendix Figure A22 but when aggregating dealers to the parent-
level. Appendix Figure A23a visualizes the dealer-product coefficients, β jp, from regression (7)—which regresses
trade margins (3) on indicator variables for each dealer-product combination plus control variables (trade-size,
the account-type, security-week and day fixed effects)—using data from 2022. Each row in a heatmap correspond
to a dealer j. A column corresponds to a product p. When the corresponding β jp is positive and statistically
significant from zero at a 5% significance level, a p- j cell is black; if it is negative it is red; and empty if the
coefficient is not statistically different from zero. Appendix Figures A23b and A23c show the analogue for bonds
and derivatives. For bonds, the baseline βp j coefficient is a large primary dealer trading government bonds; for
stocks it’s that bank trading large stocks, and for derivative it’s that bank trading Treasury futures. In all graphs,
dealers are sorted according to their trade-volume, with the dealer trading the most in the given market being at
the bottom, and the dealer trading the least at the top. Standard errors are clustered at the daily-level.
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Appendix Figure A24: Dealer specialization across products within a market — 2019, 2020,
2021, 2022

(a) Stocks (b) Bonds (c) Derivatives

Notes: Appendix Figure A24 is analogous to Figure A22, but for the other years in our sample. We note that
dealer coefficients vary across years. However, the main takeaway that no dealer outperforms across products
is robust for all years. Appendix Figures A24a visualizes the dealer-product coefficients, β jp, from regression
(7)—which regresses trade margins (3) on indicator variables for each dealer-product combination plus control
variables (trade-size, the account-type, security-week and day fixed effects) using data from 2019, 2020, and
2021, respectively. Each row in a heatmap correspond to a dealer j. A column corresponds to a product p. When
the corresponding β jp is positive and statistically significant from zero, a p- j cell is black; if it is negative it is red;
and empty if the coefficient is not statistically different from zero. Appendix Figures A24b and A24c show the
analogue for bonds and derivatives. For bonds, the baseline βp j coefficient is a large bank trading government
bonds; for stocks it’s that bank trading large stocks, and for derivative it’s that bank trading Treasury futures.
In all graphs, dealers are sorted according to their trade-volume, with the dealer trading the most in the given
market being at the bottom, and the dealer trading the least at the top.
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1 Introduction

An important role of financial markets is to produce information about asset pay-

offs. This information can then be used by decision makers (e.g., firms’ managers)

for making more efficient investment decisions, thereby increasing firm value. How-

ever, investors’ incentives to produce information derives from the profits that they

can make at the expense of less informed investors (see, e.g., Grossman and Stiglitz,

1980). This happens because of the prevalence of pooling equilbria that necessarily

arise as a result of chosen mechanisms. Thus, asymmetric information makes finan-

cial markets less liquid, which lowers asset values. Consequently, there is a trade-off

between the benefits of more informative prices and market liquidity.

Financial markets should therefore be designed to best solve this trade-off, that is,

to maximize price informativeness while minimizing illiquidity due to adverse selection

costs. In this paper, we use a mechanism design approach to study this question. For

concreteness, we consider an entrepreneur (the “issuer”) with one asset. The payoff

of this asset can be high or low and the entrepreneur does not have the expertise to

discover what is the exact realization of the payoff. To do so, he can sell a fraction of

the asset to investors who have the ability to discover its payoff by collecting additional

data. Doing so is costly and uncertain: with some probability, no information can

be discovered about the payoff. The entrepreneurs’ expected profit from the sale

of the asset is equal to the proceeds from the sale plus a gain proportional to the

reduction in the uncertainty on the asset payoff (e.g., this could be the gain derived

from investing in other projects whose payoffs are correlated with the asset payoff).

The entrepreneur chooses to sell a fraction of the asset if the maximal value of this

expected profit exceeds the expected payoff of the asset (that is, the entrepreneur’s

outside option is to do nothing).

The entrepreneur’s objective is to design the issue to maximize her expected profit.

As all investors are rational and competitive, all costs borne by investors are ulti-

mately passed back to the entrepreneur. Thus, the entrepreneur’s expected proceeds

from the issue cannot exceed the expected payoff of the asset net of information ac-

quisition costs borne by investors. However, they can be less than this upper bound.
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Indeed, to incentivize some investors to pay the information cost, the issuer must

either pay them directly or let them earn profits at the expense of investors who do

not buy information (e.g., as in Rock (1986) or Holmström and Tirole (1993)). In

the first case, the issuer faces an agency problem (investors may misreport the infor-

mation that they obtain or not pay the cost of information acquisition). To satisfy

incentive constraints, the issuer might have to leave informational rents to investors.

In the second case, uninformed investors will pass expected losses (“adverse selection

costs”) to the issuer by discounting the price at which they buy the asset. In sum,

the entrepreneur faces both agency and adverse selection costs and seeks to design

the issue to minimize these costs.

In this setting, we show that there is a mechanism that makes the entrepreneur’s

expected profit arbitrarily close to the maximum expected profit she can expect (the

one obtained in the absence of agency and adverse selection costs). The mechanism

has two stages. In the first stage, investors are sequentially offered the possibility

to buy two derivatives securities, one that pays only if the asset payoff is high and

one that pays only if it is low. If an investor refuses to participate, she retains the

possibility to participate to stage 2. The entrepreneur optimally decides when to

stop stage 1 and move to the second stage in which he sells the issue at a fixed

price, after announcing publicly the outcome of the first stage (that is, the number

of investors who participated to this stage, the number of derivatives sold and the

type of derivatives traded). The entrepreneur chooses (i) derivatives’ prices in stage

1, (ii) the payoff of each derivative, (iii) the number of investors participating to stage

1 (when to stop), (iv) the investors who can participate to stage 2 (he can exclude

some of the investors who participated to stage 1) and (v) the price of the issue.

We show that the entrepreneur can design the derivatives (their payoff and price)

in such a way that an investor who participates to stage 1 finds optimal to (i) pro-

duce information and (ii) select the derivative security that truthfully reveals the

asset payoff if she learned this payoff. Moreover, if an investor does not discover

information, she optimally abstains from buying or selling a derivative. Given these

choices, the first investor who buys a security fully reveals the payoff of the asset.

Thus, to minimize information acquisition costs, it is optimal for the issuer to stop
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stage 1 as soon as one investor trades a derivative security and moves to stage 2. In

this stage, the entrepreneur sells the asset at a price equal to its payoff.

As stage 1 takes place sequentially, the entrepreneur and investors become in-

creasingly pessimistic about whether information about the asset payoff exists as the

number of investors contacted to participate to stage 1 increases. Intuitively, this

makes the cost of incentivizing information production higher over time because in-

vestors increasingly expect to pay the search cost without discovering information.

Thus, to be incentivized to pay the information acquisition cost, investors must expect

an increasingly higher payoff from the derivatives, which is costly to the issuer. As a

result, unless information is available with probability 1, the entrepreneur optimally

stops stage 1 at some point even if no investor bought a derivative. In this case, no

information is produced in stage 1. Anticipating this outcome, some investors might

refuse to participate to stage 1 and acquire information before participating to stage 2.

However, we show that the entrepreneur can optimally avoid this outcome by pushing

further the moment at which she stops stage 1.1 In this way, the entrepreneur avoids

underpricing the issue to induce uninformed investors to participate.

When information is produced in stage 1, the entrepreneur realizes the gains of

obtaining information without paying illiquidity costs due to the risk of adverse selec-

tion for uninformed investors. When information is not produced, the entrepreneur

does not obtain gains associated with information production but she can issue shares

at the average payoff of the asset, that is, without paying illiquidity costs due to in-

formed investors participating to the issue.2 For these reasons, the expected profit of

the entrepreneur with this mechanism is arbitrarily close to the one she can obtain

when there are no agency and adverse selection frictions. The entrepreneur just needs

to compensate investors who search for information.

Our paper relates to two strands of the literature. First, it relates to the literature

on the informational benefits of financial markets for firms. These benefits can stem

1Intuitively, the entrepreneur delays the closure of stage 1 until the likelihood that information
exists is so small that the expected profit from informed trading in stage 2 is less than the information
cost.

2In this case, the entrepreneur is indifferent between issuing shares or not.
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from the use of information in stock prices for contracting (see, for instance, Holm-

ström and Tirole (1993)) or for making investment decisions (e.g., Edmans, Goldstein,

and Jiang (2015); see also Bond, Edmans, and Goldstein (2012) and Goldstein (2022)

for surveys)). In some papers in this literature, firms choose the fraction of shares

to issue facing a trade-off between the benefits of informative prices (the gain asso-

ciated with using the information in prices) and illiquidity costs (see, for instance,

Holmström and Tirole (1993), Subrahmanyam and Titman (1999), Faure-Grimaud

and Gromb (2004) or Foucault and Gehrig (2008). However, we are not aware of

papers that seek to analyze how firms should optimally design the sale of shares to

investors when they face this trade-off.

The literature on initial price offerings has analyzed the sale of shares to the

public using a mechanism design approach (see, for instance, Beneviste and Wilhelm

(1990) or Biais, Bossaerts, and Rochet (2002)). However, in most the literature on

this topic, informed investors are supposed to be exogenously endowed with private

information and firms do not derive gains from the information produced during

their price offering. Exceptions are Sherman (2005) and Sherman and Titman (2002)

and our framework is closely related to their modeling approach (in particular, the

information structure is identical). However, they do not consider the possibility of

using a sequential mechanism with two stages as we do. As discussed at the end of our

paper, this possibility makes the issuer better off (that is, the mechanism considered

in our paper dominates that considered in Sherman (2005) and Sherman and Titman

(2002)).

2 The Problem: Illiquidity versus Informativeness

under Asymmetric Information

In this section we first illustrate the tension between illiquidity and informativeness

of the trading process using a standard modeling approach for the sale of a risky asset.

Importantly, we assume that some investors have private information about the payoff

of the asset. This information is exogenous. Hence, to obtain information, the issuer

just needs to incentivize these investors to reveal their information, not to produce

5



it. We relax this assumption in the next section, which constitutes the core of our

contribution.

The model is as follows. One agent owns Q+N shares that are claims on the payoff

of a risky asset of which it wishes to sell Q shares. The payoff of the asset (per share)

is vH with probability µ or vL with probability (1 − µ). There are H + I potential

buyers (henceforth investors), where I is the number of investors with information

about the payoff of the asset. These investors perfectly know the realization of v

while the remaining investors only know the distribution of v. Each investor can buy

only up to one share and Q < H. Thus, the asset seller does not need participation

of informed investors to execute her trade. The seller cannot observe who is informed

and who is not (or cannot price discriminate based on investors’ types).

There are several possible interpretations of this set-up. First, one can interpret

the asset seller as a firm selling shares to the public in an initial price offering (IPO).

This is our leading example and, for this reason, we refer to the seller as the issuer.

Alternatively, one can see the seller as an entrepreneur selling a fraction of its stake

to venture capitalists or business angels.

One can consider several ways to organize the sale of the asset. We first contrast

two methods. The first is such that the issuance process fully reveals the payoff the

asset but it results in underpricing due to adverse selection. The second is such that

there is no underpricing because it excludes participation from informed investors.

However, as a result, the issuance process provides no information about the asset

payoff. These are just manifestations of the trade-off between illiquidity, due to

adverse selection, and illiquidity.

In the first method, the issuer sets a price pissue and investors decide whether

they want to participate or not at this price. If there is excess demand, the issuer

allocates shares pro-rata to each investor willing to buy one share at pissue. This

is a fixed price offering, as in the Rock (1986)’s model. For the issue to succeed,

the issuer must guarantee the participation of uninformed investors. Suppose that

vL < pissue < vH and consider a situation in which it is optimal for each uninformed
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investor to buy one share at this price. At this price, each informed investor finds it

optimal to buy one share if v = vH and to abstain otherwise. Thus, when v = vH ,

each uninformed investor only receives qu(vH) = Q
H+I

shares (pro-rata rationing),

while when v = vL each uninformed investor receives qu(vL) =
Q
H
. Thus, the expected

profit of uninformed investors is:

E(qu(v)(v − pissue)) = µqu(vH)(vH − pissue) + (1− µ)qu(vL)(vL − pissue). (1)

To guarantee the participation of uninformed investors (which is necessary for the

issue to succeed) and maximize the proceeds of the issue, the issuer must choose the

largest price such that E(qu(v)(v−pissue)) ≥ 0, which is the price solving E(qu(v)(v−
pissue)) = 0. Thus, the issuing price is:

p∗issue = βvH + (1− β)vL,

with β = µH
H+(1−µ)I

. As I > 0, β < µ and therefore pissue < E(v).

Thus, the issue must be underpriced for it to succeed. Note that in this case,

the issuing price does not reveal information about v since it is identical whether

informed investors participate or not in the issue. However, total demand in the issue

fully reveals the asset payoff. Thus, the trading process fully reveals investors’ private

information about the payoff of the asset. However, this information is obtained by

the issuer at the cost of underpricing (illiquidity).

Now consider a more complex method for issuance. With this method, the issuer

is allowed to make the issuance price contingent on demand. Specifically, let D be

the total demand in the issue and consider the following price schedule posted by the

issuer:

pissue =

{
vH + ϵ, if D > H and ϵ > 0,

E(v), if D ≤ H.
(2)

In this case, the following decisions for investors form a Nash equilibrium: (i) informed

investors do not participate, (ii) uninformed investors offer to buy 1 share. To see

that this is an equilibrium, consider informed investors first. As the issuing price is
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always strictly larger than vL, it is never optimal for an informed investor to buy

when v = vL. When v = vH , if an informed investor buys, she expects total demand

to exceed H and therefore the price to be vH + ϵ. Thus, not participating is a best

response to the issuer’s price schedule and uninformed investors’ strategy. Given that

informed investors never participate, uninformed investors anticipate that they will

receive qu = qu(vH) = qu(vL) =
Q
H

whether v = vH or v = vL and that total demand

will always be D = H. Thus, their expected profit is:

E(qu(v)(v − pissue)) = qu (µ(vH − pissue) + (1− µ)(vL − pissue)) = 0.

Thus, uninformed investors are indifferent between participating or not, and partici-

pation is therefore a best response to the issuer’s price schedule. The issuer cannot do

better intuitively since any price larger than pissue cannot satisfy uninformed investors’

participation constraint. Thus, this equilibrium maximizes the expected proceeds for

the issuer. However, ex-post, the issue price and total demand are completely unin-

formative since they are identical whether the payoff of the asset is high or low. This

issuance method avoids underpricing (illiquidity) by removing adverse selection, at

the cost of informativeness. This is again a manifestation of the standard trade-off.

We refer to this second mechanism as the ”no-informed trading” mechanism. It is

optimal for the issuer (it maximizes the expected proceeds from the sale of the asset)

if the latter does not derive any benefit from the information produced during the

issuance process. However, if it does (e.g., it could use the information for making

new investments) and if this benefit is large enough, the first method can dominate

the second. However, we show below that there is another mechanism that (i) avoids

underpricing and (ii) is fully revealing. Thus, this mechanism eliminates the trade-off

between illiquidity and informativeness and dominates the two previous methods. We

refer to this mechanism as the “divide and conquer” mechanism.

In this mechanism, the issuance process is organized in two stages. In the first

stage, investors are contacted sequentially and offered the possibility to buy 2 deriva-

tive contracts from the issuer whose payoffs are contingent on the realization of the

fundamental value v, when this is finally observed. The first contract, labelled CL
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pays F + ϵ if v = vL and zero otherwise, where F, ϵ > 0 are some predetermined

positive values. The second contract, labelled CH pays F + ϵ if v = vH and zero

otherwise. All derivative contracts expire right after the end of the trading round

after the fundamental value of the asset is observed. The price of each contract is

F . The first stage stops when one investor has decided to buy one of the contract or

when all investors have been contacted.

The issuer reveals the outcome of this stage to all investors and then move to the

second stage. In the second stage the underwriter allocates the Q shares among the

remaining H + I − 1 investors at pissue = vL if the investor participated in the first

stage has chosen CL and pissue = vH if the investor participated in the first stage has

chosen CH . If no investor participates to the first stage then the underwriter cancels

the issue and no allocations is done (this never happens in equilibrium).

We say that this mechanism induces full revelation if (i) only informed investors

buy in stage 1 and (ii) an informed investor selects contract Cw when she observes

that v = vw for w ∈ {L,H}.

Proposition 1. If the issuer chooses F > max{ (1−µ)
µ

, (µ)
(1−µ)

}ϵ and ϵ > 0, the mech-

anism induces full revelation and the expected proceeds per share from the asset sale

are E(v) − ϵ. In this case, the Nash equilibrium of the issuance process is that (i)

uninformed investor do not trade in stage 1, (ii) the first informed investor con-

tacted by the issuer in stage 1 chooses contract Cw when she observes that v = vw

for w ∈ {L,H} and (iii) the issuing price in the second stage is pissue = v so that

investors participating in the second stage are indifferent between buying the asset or

not.

With this divide and conquer mechanism, the expected proceeds from the sale of

the asset, E(v) − ϵ, are arbitrarily close to the maximum expected proceeds, E(v)

because ϵ (the net payoff of the derivative contracts) can be arbitrarily small (it just

needs to be strictly positive). Thus, the mechanism optimally solves the trade-off be-

tween illiquidity and informativeness in the framework considered so far. Intuitively,

the mechanism separates the problem of incentivizing informed investors to reveal
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their private information from the problem of incentivizing uninformed investors to

participate to the issue. In the two previous methods, these problems are bundled.

The divide and conquer mechanism separates them and creates competition between

informed investors to minimize the cost of information revelation for the issuer. Intu-

itively, this cost cannot be less than the cost of information production, as otherwise

informed investors would not participate. However, so far, we assume that investors

bear no information production cost (they are exogenously endowed with informa-

tion). Thus, intuitively, by inducing competition among informed investors, the issuer

can drive the cost of information revelation, ϵ, to almost zero. The condition ϵ > 0 is

just to make an informed investor strictly better off participating to the first stage.

In the next section, we show that this insight still obtains when information pro-

duction is endogenous. In this case, the divide and conquer mechanism must not

only induce investors with information to truthfully reveal their information via their

choice in stage 1 but also induce them to produce information. We discuss the robust-

ness of the mechanism to more general environments in Section 6. We think that the

divide and conquer mechanism offers an interesting benchmark for assessing frictions

in real-world financial markets. This mechanism solves the trade-off between informa-

tiveness and illiquidity. Hence, if it is not used, it must be that other frictions make it

impractical or dominated by other mechanisms. Identifying reasons why divide and

conquer mechanisms are not used more is then the question.

3 Costly Information Production

In this section, we now consider the case in which information production is en-

dogenous. This case is more complex because the mechanism that is used by the

issuer must incentivize investors both to reveal their information if they have some

and to produce information. To consider this issue, we modify the previous frame-

work as follows. As before, there are H + I investors and each investor can buy

only up to one share and H and I are large relative to Q. Only I investors have

the ability to produce information about the asset. However, at the beginning of the

asset sale, these investors have not yet information and must pay a cost to produce
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it. We denote by I (resp., H) the set of investors who (resp., don’t) have the ability

to produce information.

Information production is as follows. There is a probability π ∈ (0, 1) a proba-

bility that there information about the fundamental value of the firm. To produce

information about v, an investor must pay a cost c without knowing whether infor-

mation is available or not. After paying the cost c, if information exists, the investor

is succesful, i.e., learns v perfectly with probability ϕ ∈ (0, 1).Otherwise, that is,

if the investor is unsuccessful or if information does not exist, the investor remains

uninformed. Thus, the likelihood that an investor fails in producing information is

(1− ϕ)π + (1− π) = (1− ϕπ). Importantly failure to produce information does not

imply that information does not exist since ϕ < 1. To ensure that the information

cost is not prohibitively high, we assume that c
πϕ

< QvL (that is, the expected cost

of information acquisition is smaller than the value of the firm in bad state).

If instead the investor does not search for information, she remains uninformed

and expects the value of the asset to be vU = E(v) = µvH + (1 − µ)vL (that is, she

has access to the same information as the issuer and other uninformed investors). We

assume that the issuer cannot acquire information.3 This is a natural assumption

since we want to analyze the trade-off between informativeness and illiquidity from

the asset seller’s viewpoint. If the asset seller could pay the cost of information, she

would not need to incentivize information production in the first place.

The issuer designs
an issue mechanism

Date 0

Stage 1:
Information
Production

Date 1

Stage 2 (Trading):
The issuer sells

shares to investors

Date 2

The asset value
ṽ is revealed

Date 3

Figure 1. Timing of the model

Figure 1 presents the timing of the model. At date 0, the seller of the asset

3This does not mean that the issuer has no information. Indeed, one can assume that the issuer
first collects information and arrives to an estimate of E(v) for the firm. It just means that the cost
of collecting incremental information is too high for the issuer.
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designs and announces the mechanism that it will use to sell shares to investors.

As explained below, this choice is made to maximize the proceeds from the sale

and the “informativeness” of the sale. The mechanism is similar to the divide and

conquer mechanism presented in the previous section. In the first stage (“information

production”), the seller contacts investors sequentially and ask them to report their

information about the asset. In the second stage (“trading”), the seller proceeds to

the sale of the asset. In contrast to the divide and conquer mechanism presented

before, in stage 1, investors directly report their information (or absence thereof) and

receive a transfer from the issuer rather than pick a derivative. This difference is not

important: The use of derivatives is just a way to implement the direct mechanism

considered here. As explained in subsequent sections, the more substantial difference

is that the mechanism must make sure that investor who reports information have

indeed paid the cost of information production since their effort is not observable.

Last, we assume that at some point in the future the fundamental value of the asset

is realized, whether information production took place or not. This assumption plays

a role in the design of the incentive mechanism considered in Section 5.4

We denote the price at which the asset is sold in stage 2 by pissue and we denote

by p2 the price of the asset at date 2, just after stage 2. This price will depend on

the information publicly available after stage 2 and therefore be different from the

price at which the asset is sold at stage 2. For instance, if information is produced

and fully revealed to market participants, p2 will be vH or vL. However, this might

not be the case for the price at which the asset is sold in stage 2, giving the rise to

the possibility of underpricing or overpricing.

The seller’s utility depends on her proceeds from the sale of the asset and the

informativeness of the sale. Her proceeds are equal to Qpissue − Cissue, where Cissue

are total monetary transfers to investors participating to stage 1 (they can be zero or

even negative; see below). The informativeness of the sale is measured by the residual

uncertainty about the payoff of the asset after observing the outcome of stages 1 and

2. We denote the seller’s information set at the end of stage 2 by Ω2. It contains, for

4This is also the case in the divide and conquer mechanism considered in Proposition 1 since the
payoff of the derivatives depends on the realization of the fundamental value.
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instance, the reports in stage 1 and the price of the asset after stage 2, p2. Residual

uncertainty for a given realization of Ω2 is measured by V ar(v | Ω2). The realized

utility of the issuer is after the sale of the asset is therefore:

Π(pissue, Cissue,Ω2)) = Qpissue − Cissue − γV ar(v | Ω2), (3)

where γ measures the utility gain for the seller from a marginal decrease in uncertainty

about v after the sale of the asset. Parameter γ measures the importance of the

informativeness of the mechanism for the seller. If γ = 0, the seller does not care

about informativeness and, as we shall, see in this case she will organize the issue so

that no information is produced. In this case, the illiquidity-informativeness trade-

offis moot since information has no value. Thus, the more interesting case is γ > 0.

As explained below, the seller designs the mechanism for selling the asset at date 0

to maximize E(Π(pissue, Cissue,Ω2))), the expected value of her realized utility after

the issue.

3.1 Benchmark: Information Production is Observable

As a benchmark, we first consider the case in which the issuer can observe whether

a given investor has the ability to produce information or not and that investors always

truthfully report the outcome of their search for information. Moreover, we assume

that the issuer can exclude informed investors from stage 2 (e.g., by using the no-

informed mechanism described in Section 2). Thus, in this benchmark, we consider

the case in which there is no moral hazard in stage 1 and no adverse selection in stage

2. In this case, the issuer’s problem is to obtain information at the lowest possible

expected cost.

In this case, the issuer faces no incentives compatibility constraints (investors

don’t need to be incentivized to report truthfully what they know). It must still

design the issuing mechanism to guarantee participation by investors to each stage.

This means in particular that, in stage 1, the issuer must compensate investors for

their information production cost (as otherwise they would not produce information).

Moreover, in stage 2, the issuer cannot sell the asset at a price larger than its expected
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payoff conditional on the information produced during stage 1, as otherwise investors

would not buy shares in Stage 2. Given this, the largest expected proceeds that the

issuer can achieve are equal to QE(v) minus the expected information acquisition

costs for investors in stage 1. We show below that this is indeed the case. Moreover,

the maximum expected utility achieved by the issuer in this case is an upper bound

for its expected utility in the case in which the issuer does not observe whether

investors acquire information because in this case the issuer face additional incentives

compatibility constraints (see Section 5).

In stage 1, the issuer contacts investors with the ability to produce information

sequentially, that is, investors in I.5 Each contacted investor optimally chooses to

produce information or not and reports the outcome of her search to the issuer. If

she chooses to produce information, the investor pays the information acquisition

cost, observes the outcome of her search for information and finally reports a message

s ∈ {H,L, U} to the issuer, where s = H means that the investor has discovered

v = vH , s = L means that the investor has discovered v = vL and s = U means that

the investor has found nothing. To compensate the ith investor, the issuer pays a fee

fi,si which can depend on the investor’s report (si) and his position (i) in the queue of

contacted investors.6 If the investor chooses not to produce information, she receives

no reward.

Importantly, this process brings information about whether information about v is

available or not. Indeed, since the information is not present with certainty (π < 1),

investors (as well as the issuer) update their beliefs about availability of information

after every unsuccessful round of information acquisition. The probability that there

is information available about the payoff of the asset conditional on observing i − 1

uninformative signals in a row is:

πi =
(1− ϕ)i−1π

(1− ϕ)i−1π + (1− π)
. (4)

5Contacting investors in H is useless for the issuer since they cannot help the issuer to obtain
information.

6We assume that investors know their position in the queue.
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Observe that π1 = π and that πi decreases with i. Thus, investors participating to

stage 1 and the issuer becomes increasingly more pessimistic about the possibility of

finding information as the length of stage 1 increases.

The ith investor produces information if her expected reward exceeds the cost of

information production, that is, if:

πi [ϕµfi,H + ϕ(1− µ)fi,L + (1− ϕ)fi,U ] + (1− πi)fi,U ≥ c, i ∈ {1, ..., τ}, (5)

This equation is the participation constraint of the ith contacted investor in Stage

1. The L.H.S is the expected fee received by the investor producing information and

the R.H.S is the cost of producing information. Thus, eq.(5) is the participation

constraint of the ith investor.

As πi decreases over time when π < 1, there is a information production round

K∗ after which contacting subsequent investors to obtain information is not optimal.

Thus, when the K∗th investor fails to find information, the issuer’s expected utility

is

QE(pissue)− c− γµ(1− µ)(vH − vL)
2.

If instead, the issuer contacts one extra investor and then moves to stage 2, his

expected utility is:

QE(pissue)− γ(1− πK∗+1ϕ))µ(1− µ)(vH − vL)
2,

because Pr(Ω1 = U) = (1−πK∗+1ϕ) in this case. By definition ofK∗, this course of ac-

tion must be dominated by moving to stage 2 not optimal if and only if γπK∗+1ϕµ(1−
µ)(vH − vL)

2 > c. This implies that K∗ = Kmax.

Once an investor has found information, there is no incentive for the issuer to

keep contacting investors in I since uncertainty about v has been fully resolved and

the outcome of stage 1 is publicly announced. Thus, stage 2 should optimally stop

when one investor reports s = H or s = L. The issuer could also optimally stop when

s = u after many trials because inducing investors to produce information becomes
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increasingly costly as i increases when π < 1 (see the participation constraint eq.(5)).

Thus, we let K be the total number of contacted investors in stage 1 be another

choice variable for the issuer. This number can be smaller or larger than I because

one informed investor can be asked repeatedly to produce information. We denote

by τstop the number of rounds in stage 1. This number is the minimum of K and the

first time at which an investor finds information. For a given realization of τstop, the

total cost of stage 1 for the issuer is therefore:

Cissue =

i=τstop∑
i=0

fi,si = (τstop − 1)fi,U + fτstop,sτstop . (6)

Observe that Cissue is random because the stopping time for stage 1 is random since

whether investors discover or not information in stage 1 is random.

After stage 1 is completed, the issuer announces the outcome of this round and sets

a price pissue for the issue. The outcome, Ω1 is H if one investor has reported s = H,

L if one investor has reported s = L and U otherwise. As we assume that an investor

with information cannot participate to stage 2, we must have pissue ≤ E(v | Ω1)

to guarantee participation of uninformed investors to stage 2. Last, as the trading

process in stage 2 is uninformative (since no informed investors participate to this

stage), Ω2 = Ω1. Thus,

E(V ar(v | Ω2)) = Pr(Ω1 = U)µ(1− µ)(vH − vL)
2, (7)

where Pr(Ω1 = U) is the probability that no information is produced during stage 1.

Thus, for a given design of stages 1 and 2, we deduce from eq.(3) and eq.(7) that

the expected utility of the issuer is:

Π(pissue, {fi,si}, K}) = QE(pissue)−E(Cissue)−γPr(Ω1 = U)µ(1−µ)(vH −vL)
2. (8)

At date 0, the issuer chooses {pissue, {fi,si}, K} to maximize her expected utility,

under the constraints that investors participate to stages 1 and 2. Thus, she solves
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the following problem:

Πbench = max
{pissue,{fi,si},K}}

Π(pissue, {fi}), (9)

subject to the participation constraints:

πi [ϕµfi,H + ϕ(1− µ)fi,L + (1− ϕ)fi,U ] + (1− πi)fi,U ≥ c, i ∈ {1, ..., τ}, (10)

pissue(s) ≤ E(v | Ω1) (11)

for every s ∈ {H,L, U}. Observe that K affects the expected utility of the issuer

because it determines the distribution of the stopping time. One can solve the prob-

lem in two steps. First, for a given (pissue, {fi,si}), one can solve for the optimal

K∗(pissue, {fi,si}). Then, in a second step, one can solve for the {pissue, {fi,si}} that

maximizes: Πbench(pissue, {fi,si}, K∗(pissue, {fi,si})).

Define Kmax to be the maximal i satisfying

c

πiϕ
< γµ(1− µ)(vH − vL)

2. (12)

We assume that this condition holds for i = 1, i.e., for πi = π (the case in which it

does not is discussed below) so that Kmax > 1. The solution to the issuer’s problem

in this case is as follows.

Proposition 2. In the benchmark case, the issuer’s optimal issuance strategy is as

follows.

1. Stopping time: the issuer stops contacting investor as soon as it obtains a pos-

itive (s = H) or a negative (s = L) report or the number of rounds exceeds

Kmax;

2. Fees: conditional upon observing si−1 = U , the issuer sets fi,L = fi,H = c
ϕπi

and

fi,U = 0.

3. Price: the issuer sells shares to Q investors (chosen randomly) at price pissue =

E(v | Ω1.
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4. Value of objective function:

Π∗
bench = M + (Q+N)E(v)− cKmax(1− π)− cπ(1− (1− ϕ)Kmax)

ϕ

− γµ(1− µ)
(
1− π + π(1− ϕ)Kmax

)
(vH − vL)

2. (13)

Proof. See Appendix.

Given our assumptions, it is straightforward that the issuer should sell shares in

stage 2 at pissue = E(v | Ω1). A lower price would leave rents to investors while at

a larger price investors would not buy shares. As a result, the issuer expects to sell

shares at E(v).

The information produced in stage 1 is useless to increase the proceeds from the

issue because there is no adverse selection in stage 1. However, it is useful to reduce

uncertainty about the payoff of the asset. In designing stage 2, the issuer trades-off

the benefit of reducing uncertainty with the cost of producing information.

The issuer always sets its fees for information production so that the participation

constraint of each investor contacted to produce information is binding. Thus, when

an issuer contacts an investor, he expects to pay c to the investor. However, the

issuer’s optimal fee structure is to reward the investor only if the search for information

is successful. Thus, it pays the investor more than c (in fact c/ϕ) when the investor

is successful in finding information and nothing otherwise.

We have assumed that the issuer contacts investors sequentially one by one in

stage 2. An alternative is to contact investors by batches of Mi investors in each

round i. We call this the “batched process”. the next proposition that the optimal

size of a batch is Mi = 1 for each i ∈ {1, 2, ..., K∗}. Thus, the process we have

considered so far is the optimal way to organize information production in stage 2.

Proposition 3. In the batched procedure, the optimal size of a batch is Mi = 1 in any

round. Thus, the sequential procedure where the issuer contacts exactly one investor

per round is optimal for the issuer.
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Proof: see Appendix

The intuition is as follows. Suppose that the issuer deviates from the previous

policy by contacting M1 > 1 in the first batch. In this case, the issuer must pay

M1c for sure to all investors contacted in the first batch (as each must expect a

payment of c to produce information) and the likelihood that none of these investors

find information is (1 − π) + π(1 − ϕ)M1 . The likelihood of this event is identical

to that if investors are contacted sequentially. However, in the latter, the expected

payment to investors is strictly smaller than M1c because there is the possibility that

one investor finds information before all investors are contacted, in which case the

issuer optimally stops the search for information. Last, conditional on none of the

M1 investors finding information, the continuation value for the issuer is exactly the

same if he contacts the M1 investors sequentially or not. Thus, the issuer is strictly

better off not contacting the M1 first investors in a batch. The same argument can

show that this is also the case at any round.

In sum, Π∗
bench is the largest possible expected utility for the issuer. It serves

as benchmark to measure the efficiency of the various mechanisms that the issuer

can use in the more complex case in which (i) the issuer does not observe investors’

information acquisition decision and the signals received by informed investors and

(ii) the issuer cannot prevent investors from choosing to secretly produce information

when contacted to participate to stage 2. In this case, the issuer faces a moral hazard

problem in stage 1 and there is adverse selection in stage 2, which may force the issuer

to sell the asset at a discount, as explained in Section XXX. One may think that these

frictions will reduce the expected utility that the issuer can achieve due to the trade-off

between liquidity and informativeness. However, in Section, we show how the issuer

can design a mechanism that makes the issuer’s expected profit arbitrarily close to

Π∗
bench. This implies that this mechanism dominates any other mechanism that the

issuer could use in the context of our model (in particular that proposed by Sherman

and Titman (2002) in the same environment or modification of Rock (1986) model

to costly information acquisition).
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4 Mechanisms

In this section we describe several competing mechanisms that can be considered as

candidates to implement the first-best allocation described in the benchmark model.

4.1 Fixed price mechanism (FP)

The pooling mechanism (FP) is an extension of the fixed price offering of Rock

(1986) where the costly information has to be endogenously acquired. In this mecha-

nism the issuer sets a pooling price pissue and let investors decide whether they want

to participate or not in the issue at this price. If there is excess demand, the issuer

allocates shares pro-rata to each investor willing to buy one share at pissue. Those

investors who have the ability to search and acquire the information endogenously

decide where or not to do so.

The optimal strategies of the issuer and the investors are as follows.

Proposition 4. Under FP mechanism:

• the issuer offer the issue price with underpricing pissue < E(v);

• there is a number 0 ≤ KFP ≤ I of investors who participate in the information

production;

• the issuer objective function under this strategy is:

ΠFP = M + (Q+N)E(v)− cKFP

−
γµ(1− µ)

(
1− π + π(1− ϕ)KFP

)
(vH − vL)

2

µ (1− π + π(1− ϕ)KFP ) + (1− µ)
. (14)

Proof: See Appendix

4.2 No-information production mechanism (NI)

Now consider another mechanism in which the issuer sets a price of vH + ϵ if the

total demand in the IPO is strictly larger than H and a price equal to pissue = E(v)
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otherwise. Using the same argument as before with this mechanism, no investor

searches for information. Thus, all investors are indifferent between participating

or not and the case in which just H investors participate is an equilibrium. There

also equilibria in which less than H but more than Q investors participate. In this

“mechanism”, the issuer gets an expected utility of:

ΠNIM = M + (N +Q)E(v)− γµ(1− µ)(vH − vL)
2. (15)

5 Optimal mechanism

In this section we describe the sequential mechanism (SEQ) that implements an

allocation provided in the benchmark model.

5.1 Description of the mechanism

As described in the benchmark case, the issuance is happened in two stages. At

the beginning of date 1 investors to apply for Stage 1 trading. The issuer randomly

chooses one of the applicants to trade in Stage 1. Before trading, the chosen investor

can (but might choose not to) attempt to acquire information. During Stage 1 the

investor can either buy one of the offered by the issuer derivative contracts whose

payoffs are contingent on the realization of the firm value v or decide (upon observing

the information acquisition process) not to trade derivatives. If the chosen investor

decides not to trade in Stage 1, that investor is excluded from the allocation and the

issuer may either re-open Stage 1 for the remaining investors or proceed to Stage 2.

In Stage 2, the issuer decides on the price of shares and equally allocates them

among the rest of the investors who is willing to accept the offered price. The investors

before deciding whether or not to accept the offered price in Stage 2 may privately

attempt to acquire information. After observing investors actions during Stage 1 and

the reported signal (if any), the issuer decides on price at which to allocate shares

during Stage 2.

In Stage 1, the issuer issues derivative contracts whose payoffs are contingent on
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the realization of the fundamental value v. Given that the firm value can take only

two distinct values, it is sufficient to offer only two different contracts corresponding

to each of the realization of the firm’s value. The idea behind this is that an informed

trader by choosing the specific derivative contract will reveal the information they

possess about the realization. At the beginning of Stage 1, the issuer invites investors

to apply for the allocation of the derivative contract on the “first come first served”

basis (or alternatively, the issuer could randomly select an investor among those who

applied). Application for Stage 1 trading is optional and each investor might choose

not to apply and wait for Stage 2 allocation instead.

If an investor is selected to trade in round i of Stage 1, he has to pay the issuer

a fixed fee F and then he gets the right to buy one contract of either CH or CL.

The contract corresponding to the bad state CL pays F + fi,L if v = vL at date 3

and zero otherwise; the contract corresponding to the good state CH pays F + fi,H if

v = vH and zero otherwise. The fee fi is determined by the issuer before the issuance

process, and depends in general on the information cost c, probability of successful

information acquisition and the number of rounds in information acquisition.7 It is

designed to incentivize investors to acquire information (which is optional for them

and they can choose not to pay information costs and not to acquire the information).

If the investor who has applied for Stage 1 and has been chosen to trade decides to

report the neutral signal (either because he was unsuccessful in acquiring information

or and he decided strategically to misreport and hide the information) does not trade

any derivative contract and is excluded from the allocation. Exclusion of investors

who refuse to trade in Stage 1 is needed to ensure the efficiency of the allocation

and minimization of the cost of issuance. Suppose the investor receives a positive

signal and strategically misreports the neutral signal betting on the issuer failing to

acquire informative signal and offering the shares in Stage 2 at some average prices.

In order to ensure truth telling and avoid this scenario the issuer has to offer higher

compensation to those who disclose informative signal (by trading the derivative

7Each of these contracts can be replicated by issuing “butterfly spread” – a portfolio of call
options written on the underlying asset, for example, CL contract payoff is equivalent to the payoff
of a long position in call option with strike price fi,L − F , a short position in two call options with
strike price vL and a long position in a call option with strike price fi,L + F for given round i.
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contract in Stage 1) which, in turn, increases the cost of issue. By excluding investors

who declare neutral signal during Stage 1 eliminates this possibility as these investors

will have no chance to exploit acquired information in the subsequent stage. On the

other hand, investors who did not apply for Stage 1 trading can still participate in

the following rounds of Stage 1 (should it have been announced) or being considered

for allocation in Stage 2.

If during Stage 1 an investor bought one of the derivative contracts, the Stage 1

trading is ended and the issuer opens Stage 2 allocation. If the initial attempt to

sell the derivative in Stage 1 fails, i.e., the investor who applied to trade derivatives

decided not to close the trade (e.g., the signal received by the investor appeared to

be neutral), then the issuer may call for the second round of application to trade in

Stage 1. Any of the remaining investors (except those who have been excluded from

the issue due to declaring neutral signal in one of the previous rounds) are allowed

to participate. If Stage 1 results in unsuccessful trade after round K, the issuer

terminates Stage 1 and proceed to Stage 2 allocation.

In Stage 2 the issuer allocates the Q shares among the remaining investors at price

pissue = vH if Stage 1 ends with the purchase of CH contract, at price pissue = vL if

Stage 1 ends with the purchase of CL contract, and at price pissue = µvH + (1− µ)vL

if Stage 1 ends with no transaction after Kmax rounds. Each investor receives at most

one share.

5.2 Issuer’s objective and constraints

Similarly to our benchmark model, we define the issuer’s problem as minimization

of a separable function of accuracy of the price at Date 2, the expected amount of

underpricing and expected cost of derivative trading (8). The main difference is that

the issuer faces additional constraints relative to the benchmark model.

There are three main types of constraints that the optimal mechanism has to sat-

isfy. The issuer needs to give investors the incentive both to buy the information and

to report it accurately. As part of mechanism design problem, the issuer must design

an allocation and pricing schedule that elicits accurate information from investors.
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Since the issuer uses the reported information to price the issue, the pricing and

allocation strategy must counteract investor incentives to withhold favorable infor-

mation that will lead to a higher issue price. We will be considering Nash equilibria

where, conditioned on the issuer’s strategy, investors have an incentive to truthfully

reveal their information, given their expectation that other investors will also report

information accurately.

Let R(si, σ) be the expected profit to an investor i who has been chosen to partici-

pate in the information acquisition process, receives signal si but decides to report the

state σ instead (by means of choosing to trade the derivative Cσ, for σ ∈ {H,L} or

not to trade if σ = U). The assumption that the investors are excluded from the allo-

cation when declaring neutral signal implies that R(si, U) = 0 for any si ∈ {H,L, U}.
In equilibrium, investors are induced to report their information truthfully, which

implies that the following truth-telling constraints must be satisfied:

R(si, si) ≥ R(si, σ) for all si, σ ∈ {H,L, U}. (16)

It should be noted that the cost of acquiring information does not affect the infor-

mation reporting conditions, since it is a sunk cost by the time the investor decides

what signal to report. On the other hand, whether or not the investor plans to accu-

rately report the signal certainly affects the incentive to buy a signal. After all, if the

investor planned to report U (or H or L) regardless of the actual signal, then there

would be no reason to buy a signal.

In addition to the truth-telling conditions, a constraint is needed to guarantee that

investors choose to acquire information. The first set of conditions is that buying and

reporting a signal offers at least as high an expected profit as not purchasing a signal

and falsely reporting either H or L during Stage 1 trading:

πiϕ(µR(H,H) + (1− µ)R(L,L)) + (1− πiϕ)R(U,U)

≥ R(∅, σ) + c, σ ∈ {H,L, U}, i ≤ τ, (17)

where R(∅, σ) is the expected profit to an investor who reports σ without observing a

24



signal. The profit of truthful reporting is equal to the profit from the corresponding

derivative contract R(si, si) = fi(si) for si ∈ {H,L} and the profit from reporting the

neutral signal R(U,U) = fi(U) = 0. The expected profit to an investor who reports

σ without observing a signal is

R(∅, σ) =

{
µ(−F ) + (1− p)fi,L, σ = L,

µfi,H + (1− µ)(−F ), σ = H.
. (18)

As a result, the condition (17) is equivalent to the following two conditions:

fi,H(πiϕµ)− fi,L(1− πiϕ)(1− µ) ≥ c− µF, (19)

fi,L(πiϕ(1− µ))− fi,H(1− πiϕ)µ ≥ c− (1− µ)F. (20)

The second condition reflects the incentives of the investors to purchase a signal rela-

tive to patiently waiting for State 2 offering and not to apply for State 1 information

acquisition:

πiϕ(µR(H,H) + (1− µ)R(L,L)) + (1− πiϕ)R(U,U)− c

≥ P (s = H)(vH − pissue(H)) + P (s = L)(vL − pissue(L))

+ P (s = U)RStage2(U), i ≤ τ, (21)

where RStage2(U) is the return that the investor receives from observing state U

announced by the issuer in Stage 2. This return is either equal to (µvH +(1−µ)vL−
pissue(U)) when the investor is allocated a share and accepts price pissue(U) or 0 if

the investor is not allocated the share or refuses to participate.

5.3 Equilibrium

The optimal strategy of the investors (in terms of whether to acquire the informa-

tion and whether to tell the truth) depends on their beliefs about issuer’s commitment

to start the Stage 2 even if it is unsuccessful in revealing the true fundamental value

or not. Given that the information acquisition process can be lengthy and requires

several rounds to obtain the information, we assume that there is no time discount-
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ing for the issuer. We discuss the implications of time discounting in the following

sections.

The following analysis characterizes a Nash equilibrium in which each investor

applies to Stage 1 trading, optimally pays for acquiring information and truthfully

reveals the information to the issuer via purchasing the corresponding derivative con-

tract.

Let us consider the state of the market when the investors failed to acquire informa-

tion after i rounds (si = U for all i). If the i traders who received those uninformative

signals in the preceding i rounds genuinely tried to acquired information and did not

hide informative signals, then the probability that there is additional information to

be gained in the market conditional on observing i uninformative signals in a row is

πi, as defined in Equation (4).

Due to the fact that π < 1, investors might have incentives not to participate

information acquisition and wait for Stage 2 betting that the information is not

revealed during K rounds and try and acquire information privately. This happens,

for example, when the number of rounds Kmax is small (e.g., due to very low value

of γ) and there is sufficiently high conditional probability of information acquisition

πi. In order to eliminate this possibility, the issuer has to invoke some additional

mechanism that prevents information production. One example of such a mechanism

can be NI described in the previous section.

The following proposition shows that the combination of SEQ andNImechanisms

implements the first-best allocation.

Proposition 5. Consider the following mechanism:

• The issuer contacts each investor sequentially and asks them to produce infor-

mation;

• The issuer stops contacting investor as soon as it obtains a positive (si = H)

or a negative (si = L) report during round i or the number of rounds with

unsuccessful reports exceeds Kmax;
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• Conditional upon observing si = U , it sets fi,L = fi,H = ε+ c
πiϕ

with arbitrarily

small ε > 0 and F >
(
ε+ c

ϕπKmax

)
;

• If si = H or si = L for some i ≤ Kmax then the issuer sells Q shares to investors

(chosen randomly) at price pissue = p1(si).

• If s = U for i = Kmax then the issuer invokes NI mechanism and sells Q shares

to investors at price pissue = E(v).

Then each of I investors applies for Stage 1 trading and the expected utility of the

issuer is given by

Π∗
SEQ = M + (Q+H)E(v)− cKmax(1− π)− cπ(1− (1− ϕ)Kmax)

ϕ

− γµ(1− µ)(1− π + π(1− ϕ)Kmax)(vH − vL)
2.

Proof. See Appendix.

Corollary 6. FP mechanism is never optimal.

Proof. See Appendix.

6 Discussion of results and limitations

The optimality of our mechanism is dependent on several key assumptions. In

this section we discuss their relevance and limitations of the mechanism with respect

to these assumptions.

One aspect where we are substantially different from Sherman and Titman (2002)

as well as other papers in the literature is the sequential nature of our mechanism. In

order to minimize the information acquisition costs, the issuer pays only one investor

at each point in time rather than a number of investors at once. Optimality of

our mechanism does not rely on the necessity of several investors having the same
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information to ensure truth-telling (as in Sherman and Titman, 2002). However, it

might take several rounds for the investors to obtain information. In the model, the

costs associated with a delay of the issue do not enter the objective function of the

issuer and we assume that it is patient enough to wait as long as needed in order to

produce the information (e.g., E(τ ∗) increases as γ increases). If time were to enter

the preferences of the issuer, the equilibrium solution would have to exhibit a trade-off

between time preferences (speed of information acquisition) and its precision.

It should also be noted our model is that there is no secondary market for the

derivatives. This means that the investor has to hold the derivative until maturity

in order to cash out the reward for information production. Introducing a secondary

market for derivatives is not straightforward as this might alter incentives of the

investors for truth-telling in anticipation of potential derivative resale price.

Another important feature of our mechanism is the absence of an active market

for shares before the derivative contracts trade (stage 1). This makes the IPO an

ideal application of our mechanism. In the presence of an active parallel market

(for example, SEO) the mechanism would still lead to the production of information

and its full revelation in equilibrium. However, the availability of a market where

the investor could trade after having acquired information would improve his outside

option, maker his truth-telling constraint more binding and so increase the cost of

information production for the issuer.

7 Conclusions

In this paper, we use a mechanism design approach to show that price informative-

ness can be achieved without illiquidity, at a cost equal to the information production

cost. We build a model of stock issuance where the issuer incentivizes investors to

search for costly information and truthfully disclose it. This is achieved by organiz-

ing the issue process in two stages where in the first stage, investors are sequentially

offered the possibility to buy two derivatives securities, one that pays only if the asset

payoff is high and one that pays only if it is low. We show that the entrepreneur can
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design the derivatives in such a way that an investor who participates to stage 1 finds

it optimal to produce information and select the derivative security that truthfully

reveals the asset payoff if she learned this payoff. Moreover, if an investor does not

discover information, she optimally abstains from buying or selling a derivative. As

a result, in the second stage, the issuer sells the asset at a price equal to its expected

payoff.

The proposed two-stage mechanism allows the issuer to pay the information costs

directly to the investor while efficiently relaxing incentive constraints (such as mis-

reporting the information that investors obtain or not pay the cost of information

acquisition). This, in turn, allows the issuer to avoid adverse selection costs.
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Appendix

Proof of Proposition 1. The mechanism must be incentive compatible both for

informed and uninformed investors. Suppose that an informed investor applies to

participate in Stage 1, observes the realization of the fundamental value v and chooses

the derivative contract Cw, w ∈ {L,H}. The profit of the investor is:

ProfitIStage 1(w|v) =

{
ϵ, v = vw,

−F, v ̸= vw.
(22)

Figure below plots the profits for each of the contracts (the black line for CL and the

red line for CH) as function of v.

ε

0 vL vH

−F

The informed investor, upon participation in Stage 1, has incentive to disclose the

information to the market maker via choosing the set of contracts corresponding to the

true fundamental value. The profit of the informed in this case is ProfitIStage 1 = ϵ > 0.

Given a strictly positive profit in Stage 1, informed investors have incentives to

participate in Stage 1 rather than Stage 2:

E
[
ProfitIStage 2

]
= v − pissue = 0 < E

[
ProfitIStage 1

]
.

The profit of an uninformed investor who decides to participate in stage 1 and chooses
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the contract Cw is

E
[
ProfitUStage 1|w = vL

]
= (1− µ)ϵ− µF < 0 = E

[
ProfitUStage 2

]
.

Hence, only informed investors choose to participate in the first stage, which leads

to full information revelation. Finally, given that the value of ϵ is arbitrarily chosen,

the loss of the issuer in this can be arbitrarily small. In a limit case when ϵ → 0, the

loss of an issuer approaches to zero.

Proof of Proposition 2. We first show that it is optimal to stop whenever si = H

or si = L. In this case, s = si and since the information is revealed truthfully by

assumption of the benchmark model, we have that E(V ar(v | p2)) = 0. Furthermore,

Πi(pissue, {fj}) = M + (N +Q)p2(si)−
i∑

j=0

fj(sj)

≥ M + (N +Q)p2(si)−
k∑

j=0

fj(sj) = Πk(pissue, {fj}).

for any k > i.

Next, we prove that τ ∗ ≤ Kmax. To do so, we first need to calculate the continu-

ation value of the objective function at any round i for the next k number of rounds

given that it is optimal to stop after the informative signal. First, note that

E(V ar(v | p2)) = (1− πi+1 + πi+1(1− ϕ)k)µ(1− µ)(vH − vL)
2. (23)

Indeed, if the process does not continue after k rounds, this means that the informa-

tion revealed and V ar(v | p2) = 0. If this is not the case, then si+j = U for any j ≤ k

and the information is not revealed. Hence V ar(v | p2) = µ(1 − µ)(vH − vL)
2. The

latter case happens if there is either no information in the market (with probability

1− πi+1) or the investors were unlucky to find one (with probability πi+1(1− ϕ)k).

Next we calculate the expected fee needed to be paid for the next k rounds.
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Lets denote by Ih the event that the issuer gets an informative signal exactly after

contacting the hth investor (i.e., either si+h = H or si+h = L and all other previously

contacted investors produces uncertain signal U). We also denote by Uh the event that

the issuer gets uninformative signals from each investors i+1, ..., i+ h (i.e., si+j = U

for all j ≤ h). In order to calculate the future expected fee (ignoring already paid

sunk costs to the previous i investors) note that for any h = 2, ..., k − i:

E

(
k∑

j=1

fi+j,si+j
|Ih

)
=

h−1∑
j=1

fi+j,U + µfi+h,H + (1− µ)fi+h,L ≡
h−1∑
j=1

fi+j,U + f̄i+h,

P r(Ih) = πi+1(1− ϕ)h−1ϕ,

E

(
k∑

j=1

fi+j,si+j
|Uk

)
=

k∑
h=1

fi+h,U ,

P r(Uk) = 1− πi+1 + πi+1(1− ϕ)i+k.

By the low of total expectations,

E

(
k∑

j=1

fi+j,si+j

)
=

k∑
h=1

E

(
k∑

j=1

fi+j,si+j
|Ih

)
Pr(Ih) + E

(
k∑

j=1

fi+j,si+j
|Uk

)
Pr(Uk)

=
k∑

h=1

(
f̄i+h +

h−1∑
j=1

fi+j,U

)
πi+1(1− ϕ)h−1ϕ+

(
k∑

h=1

fi+h,U

)(
1− πi+1 + πi+1(1− ϕ)i+k

)
=

k∑
h=1

f̄i+hπi+1(1− ϕ)h−1ϕ+
k∑

h=1

πi+1(1− ϕ)h−1ϕ
h−1∑
j=1

fi+j,U

+
k∑

h=1

fi+h,U

(
1− πi+1 + πi+1(1− ϕ)i+k

)
Ineq.(10)

≥
k∑

h=1

cπi+1(1− ϕ)h−1

πi+h

−
k∑

h=1

fi+h,U

(
1− ϕπi+h

πi+h

)
πi+1(1− ϕ)h−1

+
k∑

h=1

πi+1(1− ϕ)h−1ϕ

h−1∑
j=1

fi+j,U +
k∑

h=1

fi+h,U

(
1− πi+1 + πi+1(1− ϕ)i+k

)
with the equality whenever the constraint (10) is binding.
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Given that

πi+1(1− ϕ)h−1

πi+h

= 1− πi+1 + πi+1(1− ϕ)h−1, (24)(
1− ϕπi+h

πi+h

)
πi+1(1− ϕ)h−1 = 1− πi+1 + πi+1(1− ϕ)h, (25)

k∑
h=1

(1− ϕ)h−1

h−1∑
j=1

fi+j,U =
k−1∑
h=0

fi+h,U
[(1− ϕ)h − (1− ϕ)k]

ϕ
(26)

we have the following inequality:

E

 k∑
j=1

fi+j,si+j

 ≥ cK(1− πi+1) +
cπi+1(1− (1− ϕ)k)

ϕ
−

k∑
h=1

fi+h,U

(
1− πi+1 + πi+1(1− ϕ)h

)

+ πi+1

k−1∑
h=0

fi+h,U [(1− ϕ)h − (1− ϕ)k] +
k∑

h=1

fi+h,U

(
1− πi+1 + πi+1(1− ϕ)k

)
= ck(1− πi+1) +

cπi+1(1− (1− ϕ)k)

ϕ
+ πi+1

k−1∑
h=0

fi+h,U [(1− ϕ)h − (1− ϕ)k]

− πi+1

k∑
h=1

fi+h,U [(1− ϕ)h − (1− ϕ)k] = ck(1− πi+1) +
cπi+1(1− (1− ϕ)k)

ϕ
.

Hence, the continuation value for up to k rounds is

E (Πk(pissue, {fi})|τ = i) ≤ M + (N +Q)E(v)− ck(1− πi+1)−
cπi+1(1− (1− ϕ)k)

ϕ

− γ(1− πi+1 + πi+1(1− ϕ)k)µ(1− µ)(vH − vL)
2. (27)

We are ready to prove that it is sub-optimal to continue with the information search

process if τ ≥ Kmax. We prove this by showing that the continuation value for any

number of rounds k > 1 is smaller than the expected value of the objective function

E (Π0(pissue, {fi})|τ = i) when the process is stopped at τ .

Indeed, suppose that τ ≥ Kmax. Then

E (Π0(pissue, {fi})|τ = i) = M + (N +Q)E(v)− γµ(1− µ)(vH − vL)
2.
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Hence,

E (Πk(pissue, {fi})|τ = i)− E (Π0(pissue, {fi})|τ = i)

≤ γµ(1− µ)(vH − vL)
2

− ck(1− πi+1)−
cπi+1(1− (1− ϕ)k)

ϕ
− γ(1− πi+1 + πi+1(1− ϕ))µ(1− µ)(vH − vL)

2

= −ck(1− πi+1)−
cπi+1(1− (1− ϕ)k)

ϕ
+ γπi+1

[
1− (1− ϕ)k

]
µ(1− µ)(vH − vL)

2

= −ck(1− πi+1) + πi+1

[
1− (1− ϕ)k

] [
− c

ϕ
+ γµ(1− µ)(vH − vL)

2

]
≤ −ck(1− πi+1) + πi+1

[
1− (1− ϕ)k

] [
− c

ϕ
+

c

ϕπi+1

]
= −ck(1− πi+1) +

c(1− πi+1)
[
1− (1− ϕ)k

]
ϕ

= c(1− πi+1)

[
−k +

1− (1− ϕ)k

ϕ

]
< 0.

In order to finalize the proof we need to show that it is optimal to continue as long as

τ ∗ ≤ Kmax. Suppose that the issuer managed to run τ = i information search rounds

(with 0 < i < Kmax) and all of them result in an uninformative signal U and

c

πi+1ϕ
< µ(1− µ)(vH − vL)

2. (28)

Then the expected cost of running at least one round of information search is less

than or equals to

E (Π1(pissue, {fi})|τ = i) = M + (N +Q)E(v)− πi+1ϕ [µfi+1,H + (1− µfi+1,L)]

− γ(1− πi+1 + πi+1(1− ϕ))µ(1− µ)(vH − vL)
2.

According to the constraint (10), πi+1ϕ [µfi,H + (1− µfi,L)] ≥ c but the issuer can

achieve equality if it sets µfi+1,H + (1 − µfi+1,L) =
c

πi+1ϕ
. Hence, the total expected

cost in the case of one round of information search is

E (Π1(pissue, {fi})|τ = i) = M+(N+Q)E(v)−c−γ(1−πi+1+πi+1(1−ϕ)µ(1−µ)(vH−vL)
2.
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The difference in the expected objective functions is

E (Π1(pissue, {fi})|τ = i)− E (Π0(pissue, {fi})|τ = i)

= γµ(1− µ)(vH − vL)
2 − c− γ(1− πi+1 + πi+1(1− ϕ))µ(1− µ)(vH − vL)

2

= −c+ γπi+1ϕµ(1− µ)(vH − vL)
2 > 0

(the last inequality follows from inequality (28).

The choice pissue = p1(s) is attainable and maximizes the objective function given

the constraint (11). Furthermore, the ex-ante expected costs of the issuer is minimized

when f̄i ≡ µfi,H + (1− µ)fi,L = c
ϕπi

and fi,U = 0 and the expected objective function

is equal to (13).

Proof of Proposition 3. Let us suppose that the issuer decided to implement a

hybrid procedure where it would call for Mi investors every round i who would search

for the information simultaneously. The issuer promises to compensate them with

fees fi(si,m) depending on the signal they report, where si,m is the signal reported by

the investor m in round i. This compensation should satisfy for each m

πi [ϕµfi,H + ϕ(1− µ)fi,L + (1− ϕ)fi,U ] + (1− πi)fi,U ≥ c. (29)

So, as a result, the issuer’s total expected fee in round i is

Mi∑
m=1

{πi[ϕµfi,H + ϕ(1− µ)fi,L + (1− ϕ)fi,U ] + (1− πi)fi,U} ≥ Mic. (30)

Suppose that the issuer selects the fee structure so that the equality holds in (30).

The issuer’s objective function for running k rounds of information search is

Πhybrid
k (pissue, {fi}) = M + (N +Q)E(v)− E(Cissue)− γE(V ar(v | p2))

= M + (N +Q)E(v)− cM1 − Pr(i > 1)E(Cfuture | i > 1)

− γ(1− π + π(1− ϕ)M1)E(V ar(v | p2) | i > 1),
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where E(Cfuture | i > 1) is the expected future costs that the issue expected to incur

conditional one more than one round going forward.

Consider now an alternative procedure, where instead of calling M1 investors

during the round 1 simultaneously, the issuer calls M1 one by one to search for the

information. If all of them fail to produce an informative signal, then the remaining

procedure is identical to the initial hybrid one. Then the issuer’s objective function

for running those M1 + k − 1 rounds (insuring that the same number of potential

investors participates) of information search is this case is

Π̃hybrid
M1+k−1 (pissue, {fi}) = M + (N +Q)E(v)− cM1(1− π)− cπ

ϕ

(
1− (1− ϕ)M1

)
− Pr(i > M1)E(Cfuture | i > M1)− γ(1− π + π(1− ϕ)M1)E(V ar(v | p2) | i > M1).

Since, M1 >
1−(1−ϕ)M1

ϕ
we have that Π̃hybrid

k (pissue, {fi}) > Πhybrid
k (pissue, {fi}).

This means that no matter what M1 the issuer chooses for the hybrid procedure,

it is always better off in running M1 sequential rounds first with the ex-ante pre-

determined number of traders M1 rather than calling them simultaneously. Given

that the issue has flexibility of adjusting this M1 ex-post (if the informative signal

realizes sooner than M1 rounds), this increases the expected objective function even

further.

Finally, repeating this step for each round i withMi > 1 shows that pure sequential

procedure dominates the hybrid (or simultaneous) one.

Proof of Proposition 4. For the issue to succeed, the issuer must guarantee the

participation of uninformed investors. Suppose that vL < pissue < vH and consider

a situation in which it is optimal for each uninformed investor to buy one share at

this price. At this price, each informed investor finds it optimal to buy one share if

v = vH and to abstain otherwise. Thus, when v = vH , each uninformed investor only

receives qu(vH) =
Q
H

shares (pro-rata rationing), while when v = vL each uninformed

investor receives qu(vL) =
Q

H(1−λ)
. Thus, the expected profit of uninformed investors
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is:

E(qu(v)(v − pissue)) = µqu(vH)(vH − pissue) + (1− µ)qu(vL)(vL − pissue).

To guarantee the participation of uninformed investors (which is necessary for the

issue to succeed) and maximize the proceeds of the issue, the issuer must choose the

largest price such that E(qu(v)(v−pissue)) ≥ 0, which is the price solving E(qu(v)(v−
pissue)) = 0. Thus, the issuing price is:

p∗issue = βvH + (1− β)vL,

with β = µ(1−λ)
1−µλ

. As λ > 0, we have: pissue < E(v). Thus, the issue must be un-

derpriced for it to succeed. Note that in this case, the issuing price does not reveal

information about v since it is identical whether informed investors participate or not

in the issue. However, total demand in the issue fully reveals the asset payoff. Thus,

if total demand is revealed ex-post, one obtains accuracy but at the cost of under-

pricing. This is a manifestation of the trade-off between illiquidity (here measured

by underpricing) and informativeness.

To simplify, suppose that investors with the ability to produce the signal but who

do not participate in the IPO (they will be indifferent in equilibrium). Likewise,

suppose that informed investors who search for information but don’t find it don’t

participate to the IPO. Now suppose that the price of the issue is such that vL <

pissue < vH . Thus, it is optimal for informed investors with information to demand

one share when v = vH and to demand no shares when v = vL. Moreover suppose

that pissue is such that it is optimal to buy one share for uninformed investors. Let

qu(v) be the allocation to uninformed investors when the payoff of the asset is v and

let qi(v) be the allocation to informed investors when the payoff of the asset is v. If

0 ≤ k ≤ K investors find information, we have:

1. qu(vH) = qi(vH) =
Q

k+H

2. qu(vL) =
Q
H
, qi(vL) = 0
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Note that k the number of informed participants in the IPO is random and that

Prob(k = j) = π
(
K
k

)
(1 − ϕ)K−k(ϕ)k for 0 < k < K and Prob(k = 0) = π(1 − ϕ)K +

(1− π).

The expected profit of an uninformed investor when the price of the issue is pissue:

Πu(pissue) = E(qu(v)(v − pissue)). (31)

The largest price of the issue that guarantees the participation of uninformed (which is

necessary for the success of the issue when v = vL) is therefore such that Πu(pissue) =

0, that is:

pissue =
E(qu(v)v)

E(qu)
. (32)

One can compute the price of the issue differently. Observe that the clearing condition

in the IPO implies:

Hqu(v) + kqi(v) = Q for ∀k and ∀v. (33)

Thus,

HΠu(pissue) = E(Hqu(v)(v − pissue)) = Q(E(v)− pissue)− E(kqi(v)(v − pissue)) = 0,

implying

Q(E(v)− pissue) = E(kqi(v)(v − pissue). (34)

This means that the total amount left on the table by the issuer is equal to informed

investors’ total expected profit. Moreover:

pissue =
E(v)Q

Q− E(kqi(v))
− E(kqi(v)v)

Q− E(kqi(v))
. (35)

Now, let τ(k) ≡ k
k+H

. τ(k) is the fraction of the issue allocated to informed investors

when v = vH . When v = vL, informed investors do not trade. Thus, we have:

E(kqi(v)v) = E(τ(k))QµvH , and
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E(kqi(v)) = E(τ(k))Qµ.

We deduce that

pissue = βvH + (1− β)vL (36)

with β = µ(1−E(τ(k))
1−E(τ(k))µ

. Observe that β < µ if E(τ(k)) > 0. Thus, informed trading in

the IPO generates underpricing.

Given our assumptions, one can compute E(τ(k)):

E(τ(k)) = π
K∑
k=1

(
K

k

)
(1− ϕ)K−kϕk

(
k

k +H

)
. (37)

Let p∗issue(K) be the equilibrium issue price when K investors search for information.

In equilibrium, the aggregate expected profits of these investors is (from eq.(34)):

E(kqi(v)(v − p∗issue(K))) = Q(E(v)− p∗issue(K)). (38)

Thus, the aggregate expected profit of informed investors searching for information

is equal to the expected loss of the issuer in the IPO (relative to an issue at the

unconditional expected value of the asset).

Now consider the determination of K. Each informed investor who searches for

information expects a profit of Πi(K) =
E(kqi(v)(v−p∗issue(K)))

K
=

Q(E(v)−p∗issue(K))

K
. As K

increases, Πi(K) decreases (to be checked). And thus, KFP is the largest value of K

such that:

Πi(K) ≥ c. (39)

Let KFP be this value. We have:

KFPΠi(KFP ) ≈ KFP c. (40)

In this approach, the aggregate demand in the IPO provides a more complex signal

about the payoff of the asset. Let D(v) = Q(qi(v)+ qu(v) be this demand. It is either

equal toH if v = vL or v = vH and k = 0 or strictly larger thanH if v = vH and k > 0.

Thus, when D > H, the IPO outcome reveals that v = vH . If D = H, however, the
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IPO demand is not fully revealing. Let µ(D = H,K) = Pr(v = vH | D = H) when

K investors search for information. We have:

µ(D = H,K) =
µ(1− π + π(1− ϕ)K)

µ(1− π + π(1− ϕ)K) + (1− µ)
(41)

Observe that µ(D = H,K) < µ. Observing that D = H is bad news as it indicates

the possibility that v = vL. Note also that µ(D > H,K) = Pr(v = vH | D > H) = 1.

It follows that:

E(V ar(v | D)) = µ(D = H,K)(1− µ(D = H,K))(vH − vL)
2

=
µ(1− µ)(1− π + π(1− ϕ)K)

µ(1− π + π(1− ϕ)K) + (1− µ)
(vH − vL)

2. (42)

Thus, in equilibrium, the expected objective function of the issuer is:

ΠFP = M +NE(v) +QE(p∗issue)− E(Cissue)− γE(V ar(v | p2(s)))

≈ M + (Q+N)E(v)− cKFP −
γµ(1− µ)

(
1− π + π(1− ϕ)KFP

)
(vH − vL)

2

µ (1− π + π(1− ϕ)KFP ) + (1− µ)
.

(43)

Proof of Proposition 5. Let us start with verifying the truth-telling condition (16).

Suppose that an investor applies to participate in Stage 1 and is chosen to acquire in-

formation. The investor observes the informative signal si ∈ {H,L} and hence learns

the realization of the true fundamental value v with probability ϕ. Conditional on

observing the informative signal the investor purchases the corresponding derivative

contract CH if si = H or CL if si = L. The investor’s profit is R(H,H) or R(L,L)

respectively, and given that fi,H = fi,H ≡ fi is equal to:

R(H,H) = R(L,L) = F + ε+ fi − F = ε+
c

ϕπi

.

Conditional on observing the neutral signal the trader is better off not participating
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in the trade as long as

R(U,H) = µ

(
ε+

c

ϕπi

)
− (1− µ)F < 0, (44)

R(U,L) = (1− µ)

(
ε+

c

ϕπi

)
− µF < 0. (45)

Both inequalities (44) and (45) hold is we choose large enough F , that is, if

F > max

{
µ

1− µ
,
1− µ

µ

}(
ε+

c

ϕπKmax

)
≥ max

{
µ

1− µ
,
1− µ

µ

}(
ε+

c

ϕπi

)
.

Moreover, R(H,L) = R(L,H) = −F < 0. This verifies truth-telling constraint (16).

Finally, since an investor reporting U signal is excluded from Stage 2 allocation,

R(H,U) = R(L,U) = −c, and hence the investor has no incentive to sabotage and

not to disclose an informative signal.

Next, we verify the set of conditions (19) and (20) that buying and reporting a

signal offers at least as high expected profit as not purchasing a signal and falsely

reporting either H or L during Stage 1 trading. Since(
ε+

c

ϕπi

)
≤
(
ε+

c

ϕπKmax

)
<

F

max
{

µ
1−µ

, 1−µ
µ

} ,
the following relationship holds:

fi,H(ϕπiµ)− fi,H(1− ϕπi)(1− µ) =

(
ε+

c

ϕπi

)
(πiϕµ)−

(
ε+

c

ϕπi

)
(1− πiϕ)(1− µ)

= επiϕ+ c− (1− µ)ε− (1− µ)c

ϕπi

> c−
(
ε+

c

ϕπi

)
(1− µ)

> c− (1− µ)F

max
{

µ
1−µ

, 1−µ
µ

} ≥ c− µF,
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which proves condition (19). Similarly,

fi,L(πiϕ(1− µ))− fi,H(1− πiϕ)µ =

(
ε+

c

ϕπi

)
(πiϕ(1− µ))−

(
ε+

c

ϕπi

)
(1− πiϕ)µ

= επiϕ(1− µ) + c− µε− µc

ϕπi

> c−
(
ε+

c

ϕπi

)
µ

> c− µF

max
{

µ
1−µ

, 1−µ
µ

} ≥ c− (1− µ)F,

which proves that the condition (20) holds.

To verify condition (21) that the investors have incentives to purchase a signal

relative to patiently waiting for State 2 offering, we note that RStage2(U) = 0. Indeed,

after the issuer invokes the NIP mechanism, the investor has no incentives to acquire

information privately is better off accepting price pissue(U) = µvH + (1 − µ)vL, in

which case RStage2(U) = 0. Hence, condition (21) follows from this argument.

As a result, all additional constraints are satisfied, and since the optimal stopping

rule, and choice of the functions {fi} and pissue are identical to the benchmark model,

the allocation achieved in this mechanism coincides with the benchmark allocation.

Hence, the expected value of the objective function is equal to

Π∗
SEQ = M + (Q+N)E(v)− cKmax(1− π) +

cπ(1− (1− ϕ)Kmax)

ϕ

− γµ(1− µ)
(
1− π + π(1− ϕ)Kmax

)
(vH − vL)

2 (46)

Proof of Corollary 6. Consider the following two cases: a) KFP ≤ Kmax and b)

KFP > Kmax.

a). Let us modify the sequential mechanism so that the we bound the stopping

time from above by τ ≤ KFP . Let us denote the expected objective function of the
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issuer in this case by

ΠSEQ(τ ≤ FFP ) = max
{pissue,{fi}}

Π(pissue, {fi}, τ ≤ FFP ),

where Π(pissue, {fi} , τ ≤ FFP ) is the value of the optimal stopping problem

Π(pissue, {fi} , τ ≤ FFP ) = sup
0≤τ≤FFP

Πτ (pissue, {fi}),

Following the proof of Propositions 2 and 5 we can deduce that

Π∗
SEQ(τ ≤ FFP ) = M + (Q+N)E(v)− cKFP (1− π) +

cπ(1− (1− ϕ)KFP )

ϕ

− γµ(1− µ)
(
1− π + π(1− ϕ)KFP

)
(vH − vL)

2 < Π∗
SEQ.

Hence, we have

ΠFP − ΠSEQ < ΠFP − ΠSEQ(τ ≤ FFP )

= cKFP (1− π) +
cπ(1− (1− ϕ)KFP )

ϕ
+ γµ(1− µ)

(
1− π + π(1− ϕ)KFP

)
(vH − vL)

2

− cKFP −
γµ(1− µ)

(
1− π + π(1− ϕ)K

FP
)
(vH − vL)

2

µ
(
1− π + π(1− ϕ)KFP

)
+ (1− µ)

< −cKFPπ +
cπ(1− (1− ϕ)KFP )

ϕ

+ γµ(1− µ)
(
1− π + π(1− ϕ)KFP

)
(vH − vL)

2 − γµ(1− µ)
(
1− π + π(1− ϕ)KFP

)
(vH − vL)

2

=
cπ

ϕ

(
1− (1− ϕ)KFP −KFPϕ

)
< 0. (47)

b). Consider a round i such that i > Kmax, so we have

c > πi+1ϕγµ(1− µ)(vH − vL)
2. (48)

In this case it is optimal for SEQ mechanism to stop. Let us show that in this case

NIP mechanism also dominates FP mechanism. Indeed, note that NIP mechanism

44



is preferred over FP mechanism by the issuer if and only if:

U ≡ cKFP − γπi+1µ(1− µ)2(vH − vL)
2(1− (1− ϕ)KFP )

µ(1− πi+1 + πi+1(1− ϕ)KFP ) + (1− µ)
> 0. (49)

Since (48) holds, we can write:

U > KFPπi+1ϕγµ(1− µ)(vH − vL)
2 − γπi+1µ(1− µ)2(vH − vL)

2(1− (1− ϕ)KFP )

µ(1− πi+1 + πi+1(1− ϕ)KFP ) + (1− µ)

= πi+1γµ(1− µ)(vH − vL)
2

(
KFPϕ− (1− µ)(1− (1− ϕ)KFP )

µ(1− πi+1 + πi+1(1− ϕ)KFP ) + (1− µ)

)
> πi+1γµ(1− µ)(vH − vL)

2

(
(1− (1− ϕ)KFP )− (1− µ)(1− (1− ϕ)KFP )

µ(1− πi+1 + πi+1(1− ϕ)KFP ) + (1− µ)

)
= πi+1γµ(1− µ)(vH − vL)

2(1− (1− ϕ)KFP )

(
1− 1− µ

µ(1− πi+1 + πi+1(1− ϕ)KFP ) + (1− µ)

)
= πi+1γµ(1− µ)(vH − vL)

2(1− (1− ϕ)KFP )

(
1− 1− µ

µ(1− πi+1 + πi+1(1− ϕ)KFP ) + (1− µ)

)
> πi+1γµ(1− µ)(vH − vL)

2(1− (1− ϕ)KFP )

(
1− 1− µ

µ(1− πi+1) + (1− µ)

)
> 0

This shows that whenever it is optimal to stop within SEQ mechanism, it is not

optimal to invoke FP as an alternative.

Suppose now that i > Kmax. We can show that SEQ mechanism dominates FP

in the similar way as in a). To do so, we can modify SEQ mechanism by forcing

the issuer to continue the information search until round KFP > Kmax if si ̸= U for

i = Kmax+1, ..., KFP . The difference in the expected objective functions are then

ΠFP − ΠSEQ < ΠFP − ΠSEQ(Kmax ≤ τ ≤ FFP ) < 0.

following the same logic as in (47).
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